
Rinnegan: Efficient Resource Use in Heterogeneous
Architectures

Sankaralingam Panneerselvam
University of Wisconsin-Madison

sankarp@cs.wisc.edu

Michael Swift
University of Wisconsin-Madison

swift@cs.wisc.edu

ABSTRACT
Current processors provide a variety of different processing
units to improve performance and power efficiency. For ex-
ample, ARM’s big.LITTLE, AMD’s APUs, and Oracle’s M7
provide heterogeneous processors, on-die GPUs, and on-die
accelerators. However, the performance experienced by pro-
grams using these processing units can vary widely due to
contention from multiprogramming, thermal constraints and
other issues. In these systems, the decision of where to ex-
ecute a task must consider not only execution time of the
task, but also current system conditions.

We built Rinnegan, a Linux kernel extension and runtime
library, to perform scheduling and handle task placement
in heterogeneous systems. The Rinnegan kernel extension
monitors and reports the utilization of all processing units
to applications, which then makes placement decisions at
user level. The Rinnegan runtime provides a performance
model to predict the speedup and overhead of offloading
a task. With this model and the current utilization of pro-
cessing units, the runtime can select the task placement that
best achieves an application’s performance goals, such as low
latency, high throughput, or real-time deadlines. When in-
tegrated with StarPU, a runtime system for heterogeneous
architectures, Rinnegan improves StarPU by performing 1.5-
2x better than its native scheduling policies in a shared het-
erogeneous environment.

1. INTRODUCTION
Systems with heterogeneous processors and a variety of ac-

celerators are becoming common as a solution to the power
wall [27, 65]. Intel and AMD place CPUs and GPUs on the
same chip [4, 32]. ARM’s big.LITTLE architecture [5] in-
cludes processors with different microarchitectures on the
same die. IBM’s canceled WireSpeed processor [20] and Or-
acle’s M7 [43] have accelerators for specific tasks like XML
parsing, compression, encryption, and query processing.

In addition to static heterogeneity from different process-
ing units, systems exhibit dynamic heterogeneity as the per-
formance observed by programs can vary over time. Con-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’16, September 11-15, 2016, Haifa, Israel
c© 2016 ACM. ISBN 978-1-4503-4121-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967938.2967964

tention for accelerators [25, 56] alters the performance ben-
efits for programs. With more mature programming mod-
els [12,48,49], more programs will try to leverage specialized
processing units and compete for access to them. Virtualiza-
tion can also lead to contention, as processing units may by
shared not just by multiple programs but also by multiple
guest operating systems [25]. Furthermore, the data copy
and dispatching overhead can greatly diminish performance
benefits offered by certain accelerators [59].

In this environment, applications that decide statically
where to run code may perform poorly by waiting for a spe-
cific processing unit while there are idle resources in the sys-
tem. For example, an encryption program that offloads work
to the GPU may wait if the GPU is used by other programs
while there are idle CPUs available. Ideally, applications
would select the processing unit offering the performance,
considering both the speedup it offers as well as the over-
head of moving data, dispatching a task, waiting time for
the unit to be available, and the application’s share of the
unit’s time. With modern programming languages that can
generate code for multiple targets, such as OpenCL [49], a
programmer should be able to write the code once and let
the system decide where it should execute.

However, in today’s systems, it is difficult for applications
to predict the utilization they can achieve on a processing
unit: OS kernels generally do not tell applications how much
CPU time or how many threads they can use. GPUs and
other accelerator are often treated as external devices, and
may lack any support for fairly sharing them between appli-
cations. It may be up to the device driver for an accelerator
to make scheduling decisions, which may not be coordinated
with CPU scheduling. While there have been research sys-
tems such as PTask and others [25, 41, 56] that perform
scheduling for tasks on a single processing unit, they are
unable to select between multiple possible units for a task.
Conversely, application runtimes for heterogeneous systems
can run a task on different processing units [6,39], but sup-
port only static heterogeneity, where the performance of a
processing unit does not vary over time.

The goal of our work is to efficiently execute programs on
dynamically heterogeneous systems. To that end, we built
Rinnegan, a system that (1) provides system-level scheduling
support for non-CPU processing units such as GPUs and (2)
extends heterogeneous runtimes with kernel support to make
informed placement decisions. Rinnegan separates resource
management, which is performed by the kernel and can en-
force global share or priority policies, from task placement
decisions, which are performed by the application runtime.

To support high-quality placement decisions, Rinnegan
provides information to applications about their expected
utilization of a processing unit: how much time they will
receive, and with what delay. This allows an application
runtime to make an informed decision about whether to use
an accelerator; under contention, it may be better to run
the task immediately on the CPU rather than waiting for a
small share of the accelerator.

However, without control over how processing units are
used, Rinnegan cannot accurately predict the utilization an
application will receive: another application could monopo-
lize a processing unit. Rinnegan therefore enforces a schedul-
ing discipline on all processing units. For the CPU, this is
already performed by the Linux kernel scheduler. For other
processing units such as GPUs, Rinnegan adds an agent that
can selectively delay or reorder tasks from different applica-
tion to achieve desired policies, such as priorities, or propor-
tional sharing.

Complementing this kernel support, Rinnegan provides a
runtime library that automatically makes task placement
decisions for applications. Rinnegan builds a performance
model for the system that incorporates the time to transfer
data to a processing unit (e.g., data copy to GPU memory)
and the overhead of dispatching a task. For each of an ap-
plication’s tasks, Rinnegan builds a simple model predicting
its runtime on each type of processing unit. At runtime,
Rinnegan combines the utilization information from the OS
with this model to predict how an application task will per-
form on each processing unit and selects the best place for
it to execute.

A key advantage of Rinnegan’s architecture is that it eas-
ily supports applications with different goals: the decision of
what is“best” is determined different for each application, so
some may choose highest throughput for batch tasks, while
others may choose a processing unit that offers the lowest
latency or best energy efficiency. Rinnegan also supports
adaptable applications that can vary the behavior based on
available resources; for example, by reducing fidelity or ac-
curacy under heavy contention. In such cases, Rinnegan can
call back into the application notifying it when performance
goals are not met or when there are idle resources, allowing
it to adapt its behavior.

An interesting benefit of Rinnegan’s approach is that ap-
plications that achieve the best speedup on a processing unit
will naturally use more of it. Applications that receive only
a marginal speedup tend to prefer less contended resources,
leaving only those that benefit greatly. As a result, even
with fully decentralized placement decisions made indirectly
by each applications, total system performance is high.

While useful as a stand-alone runtime, Rinnegan is best
suited as an execution platform for heterogeneous program-
ming systems. For example, we modified StarPU [6], which
distributes tasks among heterogeneous processing units but
is not aware of contention, to use Rinnegan. Unmodified
StarPU applications, when run with Rinnegan, automati-
cally make placement decision based on system conditions.

The Rinnegan approach advances over past heterogeneous
schedulers and runtimes in the following ways. First, the
fastest accelerator unit for a stand-alone application may al-
ways not be best when multiple programs compete for that
accelerator. Runtimes assuming static heterogeneity, or sys-
tems that select a processing unit at compile time cannot
adapt at runtime. Rinnegan shows that by exposing sys-

tem state information, such as waiting time for accelerators,
placement decisions can be made dynamically. Second, self-
placement of tasks enables applications to optimize for dif-
ferent metrics (e.g., throughput for servers, deadlines for me-
dia applications, and resource usage for cloud applications).
Rinnegan allows application to specify their own scheduling
goals, rather than relying on a system-wide policy. Finally,
the operating system performs scheduling for compute units
to provide fairness between applications. Rinnegan sepa-
rates scheduling and task placement, which helps achieve
soft isolation among applications and simplifies the OS ker-
nel by offloading the job of task placement to applications.

We performed an extensive set of experiments with GPUs
and emulated heterogeneous CPUs on a variety of work-
loads. Rinnegan outperforms native StarPU by 1.5-2x when
multiple applications contend for resources. We also show
that the performance of the Rinnegan’s decentralized design,
in which each application makes their own placement deci-
sions, is comparable to an idealized centralized scheduler
with global view of the system. We also show that Rin-
negan provides performance isolation among applications
and enables applications to achieve application-specific per-
formance goals.

2. DESIGN
We designed Rinnegan as a decentralized architecture sep-

arating resource management (how much access a process
gets to a resource), from task placement (where tasks run)
decisions as shown in Figure 1. The former is left to the OS
kernel, which is responsible for isolation among applications,
while the latter is pushed closer to applications. To sup-
port high-quality placement, the OS publishes information
allowing an application to accurately predict its expected
performance on all processing units in the system.

Compared to prior systems that perform both resource
management and task placement in the kernel [25, 56, 57],
this architecture offers several benefits:

• Application frameworks for heterogeneous systems al-
ready perform task placement, so this design fits well
into existing systems.

• Applications can easily specify their own performance
goals or modify their behavior in response to con-
tention, as the placement policy is tightly coupled to
the application.

• Performing placement in applications avoid adding
complexity to the OS kernel and makes the Rinnegan
more easily portable to other operating systems.

Terminology. (i) We use the words application and pro-
gram interchangeably. (ii) The term processing units refers
to all compute units including CPUs, GPUs, and acceler-
ators. (iii) A task in Rinnegan refers to a coarse-grained
functional block such as a parallel kernel or a function, such
as encrypting a block of data, that executes independently
and to completion. (iv) We use the term scheduling to mean
selecting the next task to execute on a processing unit, and
for deciding how long that task may run. We use placement
to mean selecting the processing unit for a task.

Ke
rn
el
	S
pa
ce Accelerator Monitor

De
vi
ce
s

Small	
Cores

Big	Core
GPUs

Crypto	Accelerator

Us
er
	S
pa
ce Application	using	Accelerators

Libadept RuntimeStubs Profiler

Accelerator	Agents
(H-Core,	CPUs,	GPU,	Crypto)O

pe
nK

er
ne

l

Rinnegan

Figure 1: Rinnegan architecture

2.1 Platform Requirements
We designed Rinnegan to target heterogeneous systems

with multiprogrammed workloads such as desktops and lap-
tops, mobile devices [21], and shared clusters [34].

Heterogeneous. Rinnegan target architectures that pro-
vide heterogeneous processing units in the form of discrete
or on-chip accelerators, and both single-ISA and multi-ISA
heterogeneous processors. Target systems include unified
CPU/GPU chip, such as AMD’s APUs [4], systems with
discrete GPUs, or with on-chip accelerator devices [20,64].

Multiprogrammed. Without multiprogramming, a single
application can take complete control of the hardware and
thus assume the heterogeneity is static and predictable. In
contrast, multiprogramming leads to contention and variable
performance as applications come and go.

2.2 Resource Management
Rinnegan promotes shared resources like accelerators as

first-class entities through its resource management support
in the kernel. The major responsibilities of the kernel layer
in Rinnegan are resource allocation, enforcing isolation and
exposing usage information about processing units. We call
this kernel component the OpenKernel because of the trans-
parency it provides to applications. The OpenKernel con-
sists of Accelerator Agents which act as resource managers
and the Accelerator monitor, which publishes usage infor-
mation from agents.

Accelerator agents. In order to support a wide variety of
devices with different characteristics, Rinnegan attaches an
agent to each unique type of processing unit, such as CPUs,
GPUs, and each type of accelerator. Agents perform two
key tasks. First, agents act as the scheduler for a type of
processing unit and enforce global policy about how much
and when each process can use a processing unit. Second,
agents gather utilization information about processing units.

Agents implement scheduling policies by controlling when
tasks are dispatched to processing units; by delaying tasks
from one application, a unit can be used by others. This al-
low agents to implement global scheduling policies. For ex-
ample, agents can use shares to provide proportional-share
scheduling that is consistent across all processing units,
which can provide performance isolation and also guarantee
performance for critical applications. Alternatively, shares
can also be allocated separately for each unit for finer-
grained control. Maximum shares for an application is set
by the administrator.

Agents gather and share usage information about the pro-

cessing units they manage. The agent tracks information
needed to predict performance, such as utilization by every
application, average size of tasks, and number of applica-
tions. This information is provided by the agents to the
accelerator monitor (described next) which then publishes
it to applications.

Accelerator monitor. The accelerator monitor is a ker-
nel service that publishes usage information from various
agents. Some information, such as total utilization of a pro-
cessing unit, is published globally to all applications. Other
information, such as an application’s expected share of a
unit, is specific to a process; the monitor calculates and
shares this information separately with each process. The
per-application information reflects the priority, share, or
scheduling guarantees of an application. For example, pro-
cessing units that have been reserved for exclusive use by one
application will show up as busy for all other applications.

2.3 Task Placement
Rinnegan follows other runtimes for heterogeneous archi-

tectures [6,12,46,49] and employs a task-based programming
interface. The programmer or compiler generates task im-
plementations for multiple processing units (not necessary
for single-ISA systems). There are several runtimes [12,49],
research systems [17,37] and initiatives like HSAIL [30] that
allow code to be written once and then compiled into bi-
naries optimized for different compute devices. For more
varied architectures, such as fixed-function accelerators, a
programmer may have to code multiple implementations.

The user-mode runtime layer of Rinnegan is contained in
the libadept library and provides three key services. First,
the runtime builds a performance model for every program
task on each processing unit, which allows it to predict per-
formance. Second, it provides a simple interface for placing
tasks on the best available processing unit. Finally, it al-
lows applications to specify performance goals that guide
the placement decision.

Performance model. The runtime builds a model to pre-
dict the performance of program tasks on different process-
ing units. Rinnegan measures basic system performance,
such as the overhead to dispatch a task and to copy data
to processing units that lack coherent memory. For each
application, the runtime measures the performance of an
application’s tasks on different processing units; this allows
it to calculate processing time per unit data from the task
execution time and the amount of data operated on. These
measurements form a model of uncontended (stand alone)
performance that can be used to calculate turnaround time
of a task on any processing unit in the system, including
dispatch overhead, data copying, and actual execution. The
stand-alone performance from the model is later combined
with utilization information from the accelerator monitor to
predict the expected turnaround time even in the presence
of contention.

Accelerator stubs. Rinnegan abstracts different process-
ing units into a single procedural interface, so application de-
velopers reason about invoking a task but not where the task
should run. Applications invoke a stub interface to launch
a task. The overall launch process involves two stages: (a)
choosing the right processing unit (b) dispatching task to
the chosen unit. The stub considers a processing unit for
task offload only if an implementation of the task for that
processing unit is available. Stubs use information from the

OpenKernel and the performance model from the profiler to
predict the performance of the task on (runnable) processing
units. The processing unit that yields the best performance
is chosen based on these predictions, and the task is offloaded
to that unit by the stub. The second stage deals with the
actual dispatch of the task. The Rinnegan runtime contains
dispatch and data transfer routines specific to an agent (and
thus specific to a processing unit). The stub handles trans-
ferring data to the unit if necessary (e.g., it lacks coherent
memory and the data is not already at the unit) and then
dispatching the task using these routines.

Rinnegan applications can specify performance goals to
libadept, which are used by the stub in selecting the best
placement for a task. For example, an application may spec-
ify maximum throughput, indicating it is willing to wait for
an accelerator that provides a high speedup, while others
may seek minimum latency and prefer a lower performing
CPU that is available immediately.

Optimizer. For tasks that have specific performance tar-
gets, such as a desired long-term throughput, Rinnegan pro-
vides an optimizer that ensures these goals are met. The
optimizer is part of the runtime and runs as a thread within
the application. It monitors application performance by in-
voking a tracker function provided by the application, which
returns the current performance of the application. If per-
formance is below the desired level, the optimizer can either
request more resources from the OS (e.g., increase priority
or share), or invoke a callback registered by the application
to reduce the amount of work (trade-off quality of the results
for performance) so performance is acceptable. For example,
a compression application may decrease compression to sus-
tain a throughput when insufficient CPU is available. The
optimizer can also detect that performance is above what is
desired, and again either invoke the OS to release resources
or notify the application that it can do more work.

3. IMPLEMENTATION
We implemented Rinnegan as an extension to the Linux

3.4.4 kernel. The code consists of accelerator agents for CPU
and GPU, the accelerator monitor, and the libadept shared
library linked to user-mode applications. The OpenKernel
and the libadept runtime consists of around 2000 and 3400
lines of code respectively. In this section we describe the im-
plementation of Rinnegan, beginning with how agents sched-
ule tasks and then discuss about user-mode task placement.

3.1 Accelerator Agents
We implemented accelerator agents for GPUs and single-

ISA heterogeneous CPUs (with standard and fast cores).
These agents enforce a scheduling policy by delaying re-
quests, and pass processor usage information to the acceler-
ator monitor. Table 1 shows the statistics generated by the
agents. Rinnegan does not yet handle directly accessible ac-
celerators, but disengaged schedulers [41] can be extended
to implement the agent functionality for such devices.

GPU agent. The GPU agent manages any GPUs present.
As GPU drivers are usually closed binaries that we can-
not extend with agent functionality, we therefore implement
the GPU agent functionality in a separate kernel-mode com-
ponent that receives scheduling information (policy, priori-
ties/shares) from an administrator and enforces scheduling
policy. The libadept runtime invokes the GPU agent before
offloading tasks, which can stall tasks to enforce the schedul-

Table 1: Details published by agents. (# - Number of)

Agent Details Published Visibility
active threads at each priority level Global

CPU Schedule time ratio for each priority Global
standard cores per application Private
Current utilization by an application Private
Maximum share allowed for an appli-
cation

Private

GPU Average task size Global
active applications Global
Runqueue status of each priority
queue

Global

ing policy. To track device usage (e.g., task size), libadept
passes task execution time to the agent after it completes.

The agent calculates GPU utilization by each application
from the information passed by the runtime. As short-lived
processes do not accumulate much utilization (e.g., current
utilization is zero), agents also report the average task size on
each GPU and the number of applications using the device.
We implement three different policies in the agent: FIFO,
Priority-based and Share-based.

The FIFO policy is the default policy in GPU drivers and
exposes a simple FIFO queue for scheduling tasks from dif-
ferent applications. However, this policy cannot enforce per-
formance isolation if tasks have different execution times: a
long task can monopolize the device because current GPU
drivers only support context switching at the granularity of
an application kernel (i.e., task).

The Priority-based policy prevents monopolization by re-
ordering requests to allow higher-priority applications to run
before lower-priority ones. However, without preemption
support that is not supported in current GPUs, low latency
cannot be guaranteed if a long task is running.

The default policy in Rinnegan is Share-based. This pol-
icy provides soft performance isolation by guaranteeing ex-
ecution time to each application. The share distribution is
maintained by Rinnegan over coarse time scales on the or-
der of hundreds of milliseconds. This is due to the lack of
preemption support in GPUs, wherein long-running tasks
with low shares can temporarily exceed their share distri-
bution. This policy defines three application classes: CUS-
TOM, NORMAL and BACKGROUND. In the CUSTOM
class, designed for applications with strict performance re-
quirements, applications reserve an absolute share of one or
more GPUs, and the total shares on a device cannot exceed
100. Possession of 50 shares on a GPU guarantees the appli-
cation a minimum of 50% time on the device. The shares un-
used by the CUSTOM class are given to applications in the
NORMAL class, where the remaining shares are distributed
proportionally among applications according to the shares
they possess. Finally, BACKGROUND applications use the
GPUs only when applications of the other two classes are
not using the device. To implement this policy, the agent
monitors the utilization by each process, and throttles appli-
cations using more than their share. Thus, after executing a
long task, an application will be blocked from running more
tasks to let other applications use the GPU.

CPU agent. The CPU agent supports two classes of
CPU cores, standard and fast, under the assumption that
parallel code runs best by having as many cores as possi-
ble, while mostly sequential code prefers one or a few fast
cores. Rather than providing a new scheduler, the agent
uses Linux’s native CFS scheduler [13], which already pro-

vides priorities and shares. The CPU agent publishes usage
information including the number of threads and fraction of
time given to threads at each priority level. This information
allows the monitor to predict how much CPU time a thread
will get on each class of cores. The share based policies
(described above) for strong performance guarantees can be
implemented by dynamically mapping the amount of shares
to a nice priority value. This leverages the fact that every
priority level has a time slice ratio over other levels.

Additionally, for standard cores, the agent provides hints
on the number of standard cores a program can use exclu-
sively, similar to scheduler activations. The calculation is
based on a min-funding [67] policy: all cores are allocated
to applications based on their priority or share, and unused
cores are redistributed. For example, a single-threaded ap-
plication can use only a single core and other cores it could
use are instead given to parallel applications. This enables
parallel applications to avoid time shares cores in most cases.

Accelerator monitor. The accelerator monitor aggregates
information from all agents and publishes it to applications.
While Linux already publishes CPU utilization information
under /proc, we need a higher-performance mechanism given
the frequency of access. The monitor shares two pages of
data with application using Rinnegan, which have read-only
access to the pages. The global data page is mapped in all
Rinnegan processes and has information about the whole
system, such as the average task size on a GPU. The private
page has process-specific information, such as its maximum
allowed utilization (e.g., what fraction of the time it can
expect) for each processing unit.

Agents invoke the monitor with the visibility of informa-
tion, an identifier for the information, and a new value (e.g.,
<public, GPU average task size, 40 ms>). Agents calculate
utilization information at periodic intervals of 10ms, which
they immediately push to the monitor. All information cal-
culated by the agents are moving averages. We currently
do not synchronize access between the monitor and appli-
cations. However, the data is entirely scalar values used as
scheduling hints, so races are benign.

3.2 libadept Adaptive Runtime
Every Rinnegan application links to libadept, which con-

sists of the performance model, stubs, and the optimizer.

Performance model. The runtime builds and maintains a
performance model for each of the application’s tasks. The
profiler predicts the task execution time by the amount of
data processed by the task; we assume that task execution
time is proportional to the amount of data processed, which
is true for many applications. For applications where this is
not the case, a more sophisticated performance model should
be used; we experienced this with the Sphyraena workload
(Table 4) that executes SQL select queries. The execution
time is dependent on the selectivity of the operators which
our model did not consider. Rinnegan also allow individ-
ual applications to provide their own performance model.
During task dispatch, libadept invokes the application to
get the predicted task performance on different processing
units, which it then combines with information from the
monitor. This allows the flexibility of using a custom per-
formance model for every application, such as more mature
models [24,36,42].

During application startup, we execute an initial set of
offloaded tasks from the application on all processing units,

similar to Qilin [38]. This generates a set of parameters—the
processing time per unit data—that are later used to predict
execution time. The model is saved for use across program
invocations. For short-lived applications, the developer can
request that the model be generated incrementally over mul-
tiple invocations of the program, rather than as one step the
first time the program runs. A program with a fewer num-
ber of tasks is considered short-lived and the profiling stage
should not adversely impact such applications.

With this initial data, the performance model generates
predictions for task execution time. libadept continuously
monitors the accuracy of predictions; if it is off by more
than 25% for more than 10 predictions, libadept recalibrates
the model by running tasks on different processing units to
generate a new set of measurement for the model. Rinnegan
does not expect the model prediction to be 100% accurate
and accommodates some error in prediction. The amount
of error that can be handled depends on the speedup ratio
between processing units. More details on the impact of
errors in performance model is analyzed in Section 4.6.

libadept runs a generic profiling task during system
startup to measure system performance, such as the latency
and bandwidth of copying data to/from a GPU and latency
of dispatching tasks. For processing units with coherent
memory, such as CPUs, the performance model assumes no
copy is required. The current implementation of libadept
does not account for the contention in I/O bus. This is ap-
proximated by a fixed overhead for transfers in addition to
the per-byte cost.

Accelerator stubs. Rinnegan stubs are implemented as
a single Accelerate function that can launch any task on
any processing unit. Applications register a task by provid-
ing a set of implementations (one per processing unit type).
They then invoke Accelerate with the task object and its pa-
rameters. The Accelerate function invokes the performance
model to determine where to run the task, moves data to
the selected processing unit if necessary, and launches the
task on the unit. While we use OpenCL [49] to generate
implementations for CPU and GPU, they can also be hand
written for better performance

Accelerate invokes the performance model to predict
the task execution time, and then computes the expected
turnaround time as follows:

Latency = Overhead+Data Copy + (Predicted

Task Execution ∗ (100 / Utilization))

The term utilization comes from the agent and is the frac-
tion of time the process can expect to receive on the process-
ing unit. It captures both expected wait time, as wait time
is inversely proportional to utilization, as well as its share.

The stub dispatches tasks to a GPU by informing the
GPU agent about the start of the tasks, managing any data
movement if required and finally invoking the OpenCL or
CUDA runtime to submit the task to the kernel driver. For
processing units with coherent memory, no movement is re-
quired. For those without coherence, such as discrete GPUs,
stubs explicitly migrate data to and from the GPU’s mem-
ory when necessary.

To dispatch tasks onto CPU cores, libadept starts worker
threads affinitized to each core in each CPU class (e.g., stan-
dard and fast) during program startup. At runtime, it adds
tasks to workqueues serviced by the desired worker threads.

The Accelerate function also takes a flag to indi-

Table 2: System configurations

Name System Configuration Accelerators
asym config 12 cores in 2 Intel Xeon X5650

chips, 12 GB RAM
2 fast cores–one per socket–at 62.5% duty cycle
Remaining 10 cores at 37.5% duty cycle

simd config 12 cores in 2 Intel Xeon X5650
chips, 12 GB RAM

GPU-Bulky (GPU-B): NVIDIA GeForce 670 with 2 GB GDDR5 RAM
GPU-Wimpy (GPU-W): NVIDIA GeForce 650 with 512 MB GDDR5 RAM

cate whether the task should run synchronously or asyn-
chronously. Asynchronous tasks return an event handle
that can be used to wait for their completion. The tasks
are queued to an internal scheduler that maintains a cen-
tral queue. Tasks are processed (the prediction process) in-
order from the central queue and then pushed onto process-
ing unit-specific task queues. The application must enforce
any data dependencies between tasks. Task execution may
not happen immediately upon queuing to the central queue.
The internal scheduler keeps the length of the processing
unit specific queues low to maintain predictor accuracy by
avoiding a long latency between selecting a unit and execut-
ing a task.

Optimizer. Rinnegan enables applications to target dif-
ferent performance goals, such as throughput guarantees or
minimum execution time (best performance). The optimizer
expects two inputs: the performance goal (e.g., 100 MB/Sec
or 10 Frames/Sec) and, a tracker function that measures and
returns current application performance. The optimizer,
part of the libadept runtime, spawns a thread that peri-
odically (every 500ms) invokes the tracker function. The
tracker function is to be implemented by every application
and it is registered as a callback with the runtime during
application start-up. The function is responsible for return-
ing the current application performance (same performance
metric — throughput or latency — as that of the target
performance) on invocation. Applications without a perfor-
mance goal always seek maximum performance (minimum
execution time) and the optimizer does not run in this case.

The optimizer operates in three phases when the tracker
function indicates that an application is not meeting its goal.
Each phase is carried out only when the preceding phase fails
to improve performance to meet the target. First, the op-
timizer tries to spread tasks across more processing units.
Applications can thus offload multiple (asynchronous) tasks
at once to different units. This is not the default behav-
ior, because the libadept tries to minimize resource cost by
ensuring performance on minimum resources. Second, for
applications with appropriate privileges, it invokes the oper-
ating system to increase priority for desired processing units.
This phase targets the application to be in CUSTOM class
share-based scheduler, and is important if applications need
to meet strict performance goals (e.g., throughput or soft
real-time). If the second phase does not succeed, for example
if the application lacks the privilege to increase its share or
all the shares are already allocated, the optimizer notifies the
application via a registered callback function (different from
the tracker function). The application uses this callback
function, which provides achieved performance, to modify
its workload. For example, a game could reduce its frame
rate or resolution. Upon availability of more resources (when
other applications exit), the application automatically gets
additional resources since the shares are proportional.

When an application performs above its goal or the opti-
mizer observes that an application is not using its maximum

utilization, it performs the same phases in reverse. This al-
lows the application to modify its workload to increase its
workload. e.g., frame rate, or to release resources to the OS
by relinquishing its shares.

void TaskGPU(void *args) {/* Task logic on GPU */}
void TaskCPU(void *args) {/* Task logic on CPU */}
int main() {

Task *tasks [10];
for (int i = 0; i < 10; i++) {

tasks[i] = IntializeAcceleratorTask(SIMD ,
TaskGPU , TaskCPU , args);

Accelerate(task[i], ASYNC);
}
for (int i = 0; i < 10; i++) {

WaitForTask(tasks[i]);
}

}

Listing 1: Program using libadept

Data movement. When launching tasks, the stub may
need to migrate the task’s data to the selected GPU if it
lacks coherent access to memory. Moving a task back and
forth between processing units can hurt due to excess data
copies. This can occur when a task is at the break-even
point between two processing units, so a small change in
utilization can push the task to switch processors. It can
also occur when there are rapid changes in the utilization of
a unit and predictions of performance are inaccurate.

Rinnegan implements mechanisms to avoid both causes of
task migration. For tasks near the break-even point, Rin-
negan dampens movement with a speedup threshold: tasks
only migrate if the expected speedup is high enough to
quickly amortize the cost of data movement. Thus, small
performance improvements that require expensive copies are
avoided. In addition, for subsequent task offloads, stubs
make an aggregate decision that determines where to dis-
patch the next group of tasks, rather than making the dis-
patch decision for each task before switching to the new
unit. In this task aggregation, group size grows with the
data movement overhead.

Stability. Rapid changes in utilization can occur when mul-
tiple applications simultaneously make an offload decision:
they may all run tasks on the same processing unit, lead-
ing to poor performance and then all migrate away from
the unit. This ping-pong problem is common to distributed
control systems, such as in routing [35]. Rinnegan takes a
two-step approach to resolve the ping-pong problem. First,
libadept detects when the predicted runtime is different than
the actual runtime. This indicates that the utilization ob-
tained from the monitor was wrong. Second, libadept tem-
porarily uses the actual turnaround time of the last task
instead of predicted turnaround time. Thus, the first appli-
cations to use the unit runs quickly and observe high perfor-
mance, while those arriving later experience queuing delay
from congestion and hence lower performance. Applications
with higher delays will tend to choose a different processing
unit, while those with less delay stay put.

Table 3: GPU application characteristics. Speedups are

relative to the CPU alone, and size is relative to AES.

Applications Task Size Task Speedup Ratio
Ratio GPU-B GPU-W

AES 1 32 22
LBM 3.33 1.4 0.5
DXT 5.6 16 4.5

lavaMD 20 27 7.5
Grep 33 10 3.3

Histogram 83 12 4

Programmer effort. Rinnegan exposes new interfaces for
programmers. We created a simple task-based programming
model to help prototype a complete system from program-
ming model to system software. Though writing a program
using the new interfaces can be done without much effort
as shown in Listing 1, it still requires program modifica-
tions for the new interface. To avoid this extra work, we
integrated the libadept runtime with the StarPU [6] het-
erogeneous runtime system. libadept is used as an execu-
tion platform; we invoke Accelerate from StarPU’s dispatch
function. However, we did not need to make any changes to
the StarPU’s interfaces meant for application development.
It already incorporates a profiling stage, that we use for Rin-
negan’ performance model. Thus programs already written
for the StarPU model can leverage the Rinnegan’s dynamic
task placement without any code changes.

4. EVALUATION
We address four major questions in our evaluation: (a)

How beneficial is adaptation in a shared environment?
(b) Can Rinnegan satisfy application-specific performance
goals? (c) Can Rinnegan isolate applications from each
other? (d) How well a decentralized scheduler performs?
We also evaluate the overhead and accuracy of individual
components of Rinnegan.

The experiments in this section focus on understanding
the behavior of Rinnegan when applications of different char-
acteristics (speedup, size of the task, long running/short
lived) are run together. We evaluate the performance of
Rinnegan against other systems such as StarPU and c-sched
(a centralized system we wrote to be similar to an Oracle)
and also with different scheduling policies. The primary goal
is to show how Rinnegan handles resource contention, which
can occur in real systems.

4.1 Experimental Methods
Table 2 lists the configurations used in our experiments.

We disable Turbo Boost and hyperthreading to avoid per-
formance variability.

Platform. We emulate an asymmetric CPU (asym config)
using Intel’s clock-modulation feature [31] (in our platforms
DVFS cannot be used for a single core) to slow down all
cores but the fast cores. Similar mechanisms have been used
in past research to emulate asymmetric processors [3]. We
wanted a single infrastructure with different forms of hetero-
geneity (asymmetric cores and several accelerators). So, we
chose to emulate the asymmetry rather than using a separate
real hardware such as big.LITTLE processors [5]. Though
none of our experiments make use of both forms of hetero-
geneity, we believe this infrastructure will serve best for the
extension of this work. We emulate powerful cores by set-
ting ten cores to run at 62.5% duty cycle and the remaining

Table 4: Workloads

Name Description
Blackscholes
[9]

Mathematical model for a financial
market

Dedup [9] Deduplication
Pbzip [51] file compression
AES [1] AES-128-ECB mode encryption,

OpenCL
LBM [63] Fluid dynamics simulation, OpenCL
DXT [47] Image Compression, OpenCL
lavaMD [14] Particle simulation, OpenCL
Grep [60] Search for a string in a set of files,

OpenCL and OMP for CPU
Histogram [60] Finding the frequency of dictionary

words in a list of files, OpenCL and
OMP for CPU

Sphyraena [7] Select queries on a sqlite database,
CUDA

EncFS [56] FUSE based encrypted file system,
CUDA

Truecrack [66] Password cracker, CUDA
x264 [40] Video Encoder, OpenCL

two at 37.5%. So, the speedup of fast core is 1.6x over slow
core [5]. Where noted, we run some applications at 100%
to emulate applications-specific speedups. The simd config
configuration comprises two GPUs of different performance
and 12 CPU cores. Applications access these processing
units through OpenCL, which uses the NVIDIA OpenCL
SDK for GPUs and Intel OpenCL SDK for CPUs.

The GPU workloads are run simultaneously for all exper-
iments performed on simd config. We run workloads contin-
uously, and present the relative throughput (tasks/second)
for applications on the system under test compared to run-
ning all the applications on GPU-B. For a few experiments,
those shown in Figure 3 and Figure 5, we allow some applica-
tions to finish in order to show how the system reconfigures..
The application properties are shown in Table 3.

Workloads. We run the workloads listed in Table 4 in
a multi-programmed environment to create contention for
hardware resources. We select workloads with specific char-
acteristics, such as tasks suitable for fast cores and varying
task sizes to demonstrate Rinnegan’s capabilities and to ex-
ercise different forms of heterogeneity.

Dedup, Pbzip and Blackscholes are parallel applications
with tasks that can benefit from running on powerful CPU
cores. We use six workloads for GPUs, described in Table 4.
These workloads demonstrate the effect of task size and im-
plementation style. For OpenCL programs, we compile to
both GPU and CPU code. The same set of applications was
also ported on to StarPU runtime. For CUDA programs, we
use a separate implementation for the CPU. Table 3 shows
the speedup for these applications when running on GPUs
and their average task sizes (relative execution time). The
speedup shown is relative to using all 12 CPUs at full per-
formance. We report the average of five runs and variation
was below 2% unless stated explicitly.

4.2 Adaptation
A major benefit of Rinnegan compared to existing het-

erogeneous runtimes is its ability to use application-specific
performance models to select the best placement for a task,
but at the same time dynamically adapting to runtime con-
ditions. We evaluate how well applications adapt to a set of
common contention scenarios.

0

1

2

3

4

5

6

Dedup Blackscholes Pbzip

S
p
ee
d
u
p
re
la
ti
ve

to
se
ri
al

Always-Fast
Asym-Aware

Rinnegan

Figure 2: Contention for fast cores.

Contention for fast cores. Rinnegan allows applications
to accelerate important code regions on a small number of
fast cores. We run multiple parallel applications concur-
rently that have tasks suitable for a fast CPU: the compres-
sion phase in Dedup and Pbzip, and the financial calculation
in Blackscholes. The speedup of fast core over regular core is
1.6x. Using asym config, we compare three configurations:
(a) Always-Fast is a compile-time static policy that always
runs all tasks on the fast cores, (b) Asym-Aware is similar
to Global Task Scheduling (GTS [33]) in which it modifies
the Linux scheduler to execute tasks on normal cores but
migrate them to a powerful core if it becomes idle, and (c)
Rinnegan, where the stub decides where to run tasks based
on speedup achievable. To demonstrate the ability of Rin-
negan to prioritize fast cores for applications with better
speedup, we made Pbzip receive a speedup of 2.65x on the
faster cores. This speedup boost was applied for all three
configurations. This was done by modifying the scheduler
to increase the duty cycle to 100% only when Pbzip runs on
the faster core.

Figure 2 shows performance normalized to serial versions
of the applications running on a regular core. The overall
performance of Rinnegan and Asym-Aware is comparable
though both configurations perform differently on Dedup
and Pbzip. Rinnegan runs the application with the best
speedup, Pbzip, on the fast cores, which gives that applica-
tion an 18% speedup compared to Asym-Aware. The Asym-
Aware greedily schedules task on faster cores as they become
available without any regard to their speedup. Rinnegan
trades-off the performance of other applications for the
high speedup application Pbzip. The Always-Fast performs
poorly because it under-utilizes the regular CPU cores while
waiting for the fast CPUs. Overall, the system throughput
is 3% higher in Rinnegan than Asym-Aware.

Contention for accelerators. A key goal of Rinnegan is
to manage contention for shared accelerators. In current sys-
tems, applications cannot choose between processing units
and thus must wait for the contended accelerator. Rinnegan,
though, allows applications to use other processing units if
they are faster than waiting. As a result, applications with
large benefit from an accelerator tend to use it preferentially,
while applications with lesser benefit will migrate their work
to other processing units. Task size also plays a role with
the FIFO policy: large tasks dominate the usage on bulky
GPU. We ran all the OpenCL GPU workloads concurrently
on simd config using the FIFO policy.

In the Native system, all applications offload tasks to
GPU-B, which leaves GPU-W and the CPUs idle. In con-

G
PU

-‐B
	 	 G

PU
-‐W

	 	 	
CP

U
s	

G
PU

-‐B
	 	 G

PU
-‐W

	 	 C
PU

s	

0	 20	 40	 60	 80	 100	
Time	 in	 Seconds	

Histogram	 lavaMD	 Grep	 DXT	 AES	 LBM	

G
PU

-‐B
	 	 G

PU
-‐W

	 	 	
CP

U
s	

Figure 3: Rinnegan task placement with FIFO policy.

trast, Rinnegan achieves 1.8x better performance because it
makes use of GPU-W and the CPU to run tasks as well. To
explain these results, Figure 3 plots the processing unit used
by each applications from a run where we launch all apps at
the same time. LBM uses the CPU only exclusively because
it gets low performance on the GPUs. In contrast, Histogram
and Grep always uses GPU-B, because of their relatively
larger tasks. This causes long delays for other applications,
and hence lavaMD and DXT move to GPU-W. When His-
togram completes, lavaMD switches to GPU-B and shares
the device with Grep. On the other hand, AES switches ex-
ecution between CPU and GPUs since the amount of data
to encrypt varies with every task offloaded by the program.
For smaller data, AES runs on the CPU to avoid costly data
copies. The three column stacks labeled FIFO in Figure 6
shows the percentage of time each application gets on differ-
ent processing units. The native stack at the left shows the
default behavior where all tasks are offloaded to GPU-B.

Rinnegan as an execution engine. We integrated Rin-
negan as the execution engine for StarPU, a runtime for
heterogeneous architectures, to analyze the impact of con-
tention awareness in the runtime. We rewrote all six GPU
workloads to run on the StarPU runtime. We compare three
different configurations for this experiment. We use two of
StarPU’s native policies [6, 62]: DMDA (deque model data
aware) offloads task to the best performing processing unit
taking into account the previously queued tasks from the lo-
cal application and Eager employs a task stealing approach
where worker threads of any processing unit can run a task
as long as the implementation for that unit is available. The
third configuration is StarPU with Rinnegan, where task of-
fload decisions are made by Rinnegan based on input from
OpenKernel. Rinnegan makes StarPU aware of other appli-
cations in the system.

The DMDA policy is representative of application run-
times [6,55] for heterogeneous architectures where tasks are
offloaded to the processing unit that performs best for that
application (inclusive of all tasks from an application) in iso-
lation. As a result, DMDA always offloads tasks to GPU-B
for our workloads since it offers highest speedup. Since the
task placement decisions consider only individual task per-
formance but not contention at accelerators (due to other
applications), DMDA’s performance suffers by not utilizing
the lower performing processing units such as GPU-W and
CPUs when GPU-B is busy.

The eager policy, similar to runtimes such as Cilk [10] and
others [58], employ a task stealing approach for task distri-
bution in heterogeneous architectures. With this policy, the

0

0.5

1

1.5

2

2.5

StarPU
DMDA

StarPU
Eager

StarPU
Rinnegan

P
er
fo
rm

an
ce

re
la
ti
ve

to
S
ta
rP

U
D
M
D
A 6.2 8.91

Histogram
Grep

DXT
LBM

LavaMD
AES

Overall

Figure 4: Throughput of StarPU-based systems.

Table 5: Stand-alone performance of CUDA workloads.

W/S - Words/s; Q/S - Queries/s; F/S - Frames/s

Truecrack Sphyraena EncFS
(read)

x264

GPU-B 320 W/S 38 Q/S 340 MB/S 15 F/S
GPU-W 230 W/S 13 Q/S 190 MB/S -
CPU 15 W/S 0.2 Q/S 13 MB/S -

StarPU runtime for each application spawns worker threads
for every compute unit in the system (12 workers for every
CPU, 2 workers for each GPU). Every worker thread pulls
task from the task pool when they are free without any re-
gard to task speedup on that processing unit. As a result,
when the GPU is temporarily busy, CPU worker threads
pull many tasks that could have run at higher speedup on
a GPU. Thus, the eager policy provides the lowest perfor-
mance of the configurations.

We show the individual applications throughput and the
overall system throughput relative to StarPU DMDA in Fig-
ure 4. Rinnegan is able to utilize the less-loaded process-
ing units and thus provide better throughput than other
policies. As a result, the overall system throughput of
StarPU+Rinnegan is 2x and 1.5x better than native poli-
cies of StarPU (Eager and DMDA) respectively.

4.3 Application-Specific Goals
The libadept library allows applications to set their own

performance goals through an optimizer that guides of-
fload decisions. We demonstrate Rinnegan’s ability to sup-
port application-specific performance goals by running the
CUDA applications—x264, Sphyraena, and EncFS—with
their own goals in CUSTOM class and Truecrack in BACK-
GRND class. Native performance of application is shown in
Table 5. The goals for each application are:

x264 15 Frames/Sec, can degrade quality for per-
formance.

EncFS 275MB/Sec on sequential reads.
Sphyraena 20 Queries/Sec. minimum
Truecrack Background: use GPU only when unused.

Of these applications, x264 can adapt by reducing fidelity
and Sphyraena uses asynchronous tasks and can spread its
work across multiple processing units.

We started the applications in their respective classes
where libadept assigns default shares to applications (15
shares on GPU-B each for applications in CUSTOM class
and no shares assigned for BACKGRND class applications).
We let libadept request shares automatically from agents af-
ter the initial assignment. We expect Rinnegan to automat-

 1

 10

 100

 0 20
 40

 60
 80

 100
 120

 140
 160

 180

W
o
rd

s
/S

e
c

Time in Seconds

Truecrack

GPU-B

GPU-W

CPUS

 0

 100

 200

 300

 400

M
B

/S
e
c

EncFS

GPU-B

 0

 10

 20

 30

 40

Q
u
e
ri
e
s
/S

e
c

Sphyraena

GPU-B

GPU-W

 0

 5

 10

 15

F
ra

m
e
s
/S

e
c

x264

GPU-B

Figure 5: CUDA workload adaptation.

ically adapt—find the right set of processing units, or adjust
shares, or callback to applications to alter configurations to
adjust performance—without any manual intervention. The
adaptation of the system is shown in form of a time graph
in Figure 5. We start x264, Sphyraena and Truecrack at
time zero, and EncFS at time 60. When applications finish,
we do not restart them so as to release resources for other
applications’ use.

As the application runs, the optimizer detects the lag in
performance and attempts to use multiple GPUs. x264, as
a synchronous application, cannot leverage multiple GPUs.
However, Sphyraena spreads its tasks across both GPU-B
and GPU-W. x264 receives around 80 shares on GPU-B and
Sphyraena gets 20 on GPU-B and 100 shares (all) on GPU-
W. Around 5th second, the runtime (through optimizer) no-
tifies applications to reduce fidelity to improve performance.
x264 adapts by reducing quality and is able to reach 13 FPS.
Truecrack, being a background application, runs on CPU
since the accelerators (GPUs) are occupied.

When x264 completes, Sphyraena receives the whole
GPU-B and achieves its goal of more than 20 queries/sec,
and Truecrack adapts by moving to GPU-W, which greatly
increases its throughput. We start EncFS at 60 seconds
and the optimizer adjusts the shares such that both appli-
cations achieve their goals by giving 80 shares of GPU-B
to EncFS, and remaining of GPU-B and the whole GPU-
W were given to Sphyraena. Truecrack is forced to move
to the CPUs at this point, as both GPUs are totally satu-
rated. Only when Sphyraena completes around 120 seconds
does Truecrack move to GPU-W, and then to GPU-B when
EncFS completes at 160 seconds. These results demonstrate
how applications adapt to the changing use of the system,
as well as how the optimizer allows applications to achieve
their goals by spreading the work, increasing the share of a
processing unit, or reducing the workload.

4.4 Preserving Isolation
Rinnegan only does placement in user-mode and leaves

scheduling and policy enforcement in the kernel to protect
against poorly behaved applications. To demonstrate Rin-
negan’s ability to isolate the performance of different appli-
cations, we allotted CUSTOM shares on GPU-B in the ratio
of 25:25:25:10:10:5 to Histogram, Grep, DXT, lavaMD, LBM

0%

20%

40%

60%

80%

100%
Pe

rc
en

t	U
sa
ge

Histogram Grep LBM lavaMD DXT AES

Native	
&

StarPU
GPU-B			GPU-W				CPUs

FIFO	Rinnegan

Shares	
Native	&	
StarPU

GPU-B		GPU-W			CPUs
Shares	Rinnegan

Shares
Assigned

Figure 6: Percentage of time spent on different devices

with various policies. Native & StarPU and Shares Na-

tive & StarPU columns uses only GPU-B. Shares As-

signed column is input.

and AES. Such a share ratio was used to show that (a) ap-
plications with large tasks (Histogram) can be constrained,
(b) small tasks (LBM) can receive guaranteed share, and (c)
isolation is achieved even in the presence of varied task sizes.

Rinnegan applications. The three stacks on the right
labeled Shares Rinnegan in Figure 6 show the portion of
each processing unit used by each application. Histogram
gets major portion of GPU-B because of its large task sizes
in FIFO-based policy. With share-based scheduling, His-
togram, Grep and DXT evenly share GPU-B, while lava-MD
uses GPU-W since it yields better performance than the
guaranteed 10 shares on GPU-B. We observe that three ap-
plications (Histogram, Grep and DXT) receive more than
their assigned 25% on GPU-B (30% each) because other ap-
plications decided to offload tasks on GPU-W or CPUs. So,
these three active applications enjoy equal share on GPU-
B. Also, applications with lower shares of GPU-B, such as
lavaMD and LBM, offload tasks to GPU-W and CPUs re-
spectively since the performance is better than on their 10%
of GPU-B.

StarPU applications. We also show how Rinnegan can
isolate applications that are not using Rinnegan by running
StarPU version of our GPU workloads. However, we mod-
ified the workloads to notify the agents about their task
execution time. The leftmost stack in Figure 6 shows the
utilization received by each application with StarPU’s na-
tive uses DMDA policy that runs all tasks on GPU-B. The
Shares native & starpu column in the center-right shows the
performance when share-based policy is enforced by the Rin-
negan GPU agent: the resulting utilization almost exactly
tracks the shares assigned. These results show both that
native Linux and StarPU alone cannot or do not enforce
performance isolation, while Rinnegan can provide isolation
even for applications not actively using it for task placement.
We note that without GPU driver support, Rinnegan relies
on applications to call into the agent to know start and com-
pletion time of the task, and not all applications may do this.
However, this functionality can be enforced either through
GPU driver modifications or disengaged scheduling [41].

4.5 Decentralized vs. Centralized
Task placement in Rinnegan is decentralized: individual

applications make placement decisions based on the state

0

0.5

1

1.5

2

2.5

Native c-sched Rinnegan

P
er
fo
rm

an
ce

re
la
ti
ve

to
N
at
iv
e

17 8.33 15.67 5.44

Histogram
Grep

DXT
LBM

LavaMD
AES

Overall

Figure 7: Centralized vs. Decentralized systems.

information exposed by the monitor. However, the infor-
mation can be stale due to the delay between when it is
generated and when applications place a task based on the
information. In contrast, task placement in a centralized
architecture is performed by a single central entity for all
applications. It has global knowledge of all tasks dispatched
so far and can make accurate decisions for future tasks. We
compare the behavior of Rinnegan against a centralized sys-
tem to understand how much performance is lost due to a
decentralized architecture.

Centralized scheduler. We built a simple centralized
scheduler, c-sched, that behaves similarly to PTask [56] or
Pegasus [25] but without the complexity and kernel modifi-
cations of those systems. libadept maintains task queues per
processing unit for each application to track all dispatched
tasks from that application. With c-sched, these queues are
made global by implementing them on a shared page acces-
sible by all applications, so the per-applications task queues
becomes system-wide task queues. This enables c-sched to
have a global view of the system and to predict the wait
time for every processing unit accurately. Thus the c-sched
scheduler is aware of tasks from all applications and can
make perfect task placement decisions. However, it requires
applications to be cooperative and can be easily gamed by
providing erroneous speedup values.

Contention results. Using the same six GPU applications
as used in previous experiments with the FIFO policy, we
compare the individual applications and the total system
throughput of c-sched against Rinnegan. We also consider
a native system that offloads task to GPU-B, the highest
speedup processing unit. The results, shown as the c-sched
and Rinnegan bars in Figure 7, demonstrate that despite
being decentralized Rinnegan still performed within 2.5% of
a perfect centralized scheduler. Rinnegan performs close to
the optimal scheduler is less prone to gaming and supports
application-level adaptation, which is difficult in a central-
ized system. To achieve adaption, application-specific con-
straints and adaptation techniques would have to be con-
veyed to the centralized service, making it more complex.

Short-lived applications. Task placement for short-lived
applications is hard without the global knowledge of the sys-
tem since the utilization information can fluctuate. We gen-
erated such applications that start, run a small task for 0.5
– 2ms and then exit. We generated small tasks with varying
inputs for AES and DXT workloads. We ran an experiment
running multiple such applications periodically to test the
overall throughput of the system in terms of tasks processed
per second. The c-sched system should provide the best per-
formance since it has a global knowledge of the system. The

performance of Rinnegan is only 3.5% lower than c-sched
whereas the native system that offloads all tasks to GPU-B
is 20% slower than c-sched. Rinnegan performs well even
without global knowledge of all workloads by using the av-
erage task size and average number of applications metrics
rather than utilization information.

4.6 Overhead and Accuracy
We separately measured the overhead of Rinnegan’s mech-

anisms and the accuracy of its profiler.

Overheads. The primary overhead in Rinnegan comes
from stubs, which must decide where to dispatch tasks. The
overhead of stubs ranged between 1µs when choosing be-
tween fast and regular CPU cores to 2µs for selecting among
different GPUs. Aggregation can reduce this by changing
the dispatch decision less often.

Task profiler accuracy. We measure the difference be-
tween the task profiler’s predicted run time and the actual
task latency including the wait time. Across all our exper-
iments, the prediction error is between 8–16%. The error
came from two sources. First, Rinnegan predicts that task
size is a linear function of input data size, which is not true
for all applications (e.g., Sphyraena). Second, we found that
the data copy latency to the GPU varied due to contention
for the PCIe bus.

To understand the importance of accurate performance
predictions, we built an analysis tool to observe the impact
of profiler error on task placement. For applications with
10x speedup, when the error rate increases from 5–100%
the probability of making an incorrect decision increases by
only 0.5%–5%. For the same range of error with applications
getting only a 2x speedup, the error probability varies from
2.3%–25%. This shows that error in profiler prediction does
not impact placement for tasks with better speedups.

Reducing data movement. Rinnegan reduces the
amount of data movement by limiting the frequency with
which tasks move between processing units with task aggre-
gation and the speedup threshold. To measure the benefit
of Rinnegan’s mechanisms for limiting data movement, we
disabled the mechanisms and randomly varied LBM’s maxi-
mum utilization for GPU-B between 65–75%. Its preference
flips between GPU-B and the CPUs and performance suf-
fers as a result. Compared to a system without the thresh-
old and aggregation mechanisms, the speedup threshold im-
proves performance by 5%, and task aggregation improves
performance by an additional 60%.

Ping-pong problem. We also investigated the impact of
the ping-pong problem by comparing Rinnegan against our
c-sched centralized scheduler. Because it has global knowl-
edge of the utilization of all processing units, c-sched does
not have the ping-pong problem. For the contention experi-
ments described in Section 4.2, we compared the task move-
ments of Rinnegan to c-sched. We found that both systems
had similar amounts of task movement. Because of varied
task size, applications saw different processing unit utiliza-
tion and hence made different scheduling decisions. To force
a ping-pong problem, we ran five copies of the same Grep
workload, which offloaded tasks of the same size. Rinnegan’s
ping-pong avoidance mechanism helped in stabilizing task
placement sooner, resulting in the same task throughput
same as the c-sched. Without the mechanism, the system
took 8-10 task offloads to stabilize, as compared to 2-3 with
ping-pong prevention.

5. RELATED WORK
Runtimes for heterogeneous architectures. Many sys-
tems provide runtime layers to aid applications in using
heterogeneous units (e.g., StarPU [6], OmpSs [18, 53–55],
Merge [37], Harmony [17], Lithe [50]). Rinnegan shares the
goal of automatically selecting where to run a task based on
predicted performance on different compute units. Unlike
these runtimes, Rinnegan supports multi-programmed sys-
tems where there may be contention for processing units by
exposing system-wide resource usage to applications. Run-
times for databases help in task scheduling on heterogeneous
architectures [11, 26]. However, they assume the system re-
sources are not shared with other applications.

Other systems abstract the presence of heterogeneous pro-
cessing units. For example, PTask [56] provide an abstrac-
tion for GPU programming that aids in scheduling and data
movement. Rinnegan differs by exposing multiple types of
processing units, not just GPUs, and by exposing usage to
applications to self-select a place to execute. In contrast,
PTask manages allocation and scheduling in the kernel.

Some runtimes [55,58] employ task-stealing for better uti-
lization of all compute units in the system. Sb̂ırlea et. al
in their runtime [58] perform stealing without regard to the
speedup of the stealer destination over the task’s current
placement whereas the OmpSs runtime [55] does not con-
sider the contention caused by other applications. As a re-
sult, the stolen task might perform worse at the destina-
tion compute unit. Rinnegan employs a task steering ap-
proach in contrast to the stealing approach in which tasks
are dispatched to an appropriate processing unit based on
its standalone performance and also the current load at the
processing unit.

Resource scheduling. Many past systems provide re-
source management for heterogeneous systems (e.g., PTask
[56], Barrelfish [8], Helios [44], Pegasus [25]). In contrast to
these systems, where the OS transparently handles schedul-
ing and resource allocation, Rinnegan cooperatively involve
the participation of applications. It exposes processing unit
utilization via the accelerator monitor to allow applications
to predict where to run their code, instead of making the
choice for the application.

Other systems provide contention-aware scheduling
(Grand central dispatch [22], Scheduler activations [2]),
where applications or the system can adjust the degree of
parallelism. Rinnegan enables a similar outcome, but over
longer time scales. Unlike scheduler activations, Rinnegan
does not notify applications during change in resource allo-
cation, but allows applications to monitor their utilization.
Baymax [15] offers QoS guarantees for critical applications
in a shared heterogeneous environment. Unlike Rinnegan,
it employs a centralized architecture and focuses on tail la-
tency as the key metric.

Adaptive Systems. Rinnegan is inspired by many previ-
ous works in the area of adaptive systems. Odyssey [45] was
built as an adaptation platform for mobile systems. Rin-
negan employs a similar architecture for shared heteroge-
neous systems and uses alternate processing units as a mode
of adaptation. Application heartbeats [29] tunes applica-
tions according to available resources, but does not address
heterogeneous platforms nor provide kernel-level scheduling
control over non-CPU processing units. Similar adaptive
techniques have been employed in databases [23] where new

interfaces between OS and databases are designed for bet-
ter performance. Varuna [61] tackles a similar problem but
targets only parallel programs. Performance is improved
by dynamically adapting the parallelism in the applications
based on the runtime conditions. However, the system runs
strictly at user level and does not offer isolation across ap-
plications due to the lack of resource management.

Multi Level Scheduling. Many systems [16, 19, 28, 52]
distribute resource management across two levels. The first
system layer is responsible for resource allocation to ensure
isolation among applications. The second layer lies within
every application, which decide for themselves how to man-
age these allocated resources. These systems are generally
designed for homogeneous platforms and are concerned with
the number/duration of CPUs available but not the type. In
most heterogeneous systems, though, applications or run-
times decide where to run their tasks (based on type of pro-
cessing unit) but are oblivious to the shared environment.
Rinnegan integrates the two designs — resource allocation
by system layer and task placement by applications — by
allowing the system to manage resources and also enable ap-
plications to make informed task placement decisions aware
of contention.

6. CONCLUSION
Heterogeneity in various forms will be prevalent in fu-

ture architectures. Rinnegan exposes available heterogene-
ity with the OpenKernel along with the system state in-
formation, and uses libadept to conceal the complexity from
application programmers. The kernel retains control over re-
source management but provides application-level code with
the flexibility to execute wherever is best for the applica-
tion. The decentralized design employed by Rinnegan per-
forms well and at the same time does not require extensive
changes to the kernel. As future work, we plan to explore
how to better handle power-limited heterogeneous systems.

Acknowledgements
This work is supported in part by National Science Founda-
tion (NSF) grants CNS-1302260, CNS-1117280 and CCF-
1533885. We would like to thank our shepherd and the
anonymous reviewers for their invaluable feedback. Swift
has a significant financial interest in Microsoft.

7. REFERENCES
[1] “Advanced Encryption Standard (AES),” http://www.

csrc.nist.gov/publications/fips/fips197/fips-197.pdf,
2001.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy, “Scheduler Activations: Effective Kernel
Support for the User-level Management of
Parallelism,” in Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, ser.
SOSP ’91. New York, NY, USA: ACM, 1991, pp.
95–109.

[3] M. Annavaram, E. Grochowski, and J. Shen,
“Mitigating Amdahl’s Law Through EPI Throttling,”
in Proceedings of the 32Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’05.
Washington, DC, USA: IEEE Computer Society, 2005,

pp. 298–309. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2005.36

[4] “AMD A-Series Desktop APUs,”
http://www.amd.com/us/products/desktop/
processors/a-series/Pages/nextgenapu.aspx.

[5] ARM Limited, “big.LITTLE Technology: The Future
of Mobile,” www.arm.com/files/pdf/big LITTLE
Technology the Futue of Mobile.pdf.

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A.
Wacrenier, “StarPU: A Unified Platform for Task
Scheduling on Heterogeneous Multicore
Architectures,” in Proceedings of the 15th
International Euro-Par Conference, ser. Lecture Notes
in Computer Science, vol. 5704. Delft, The
Netherlands: Springer, Aug. 2009, pp. 863–874.

[7] P. Bakkum and K. Skadron, “Accelerating SQL
Database Operations on a GPU with CUDA,” in
Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, ser.
GPGPU ’10, 2010, pp. 94–103.

[8] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania, “The Multikernel: A New OS
Architecture for Scalable Multicore Systems,” in
Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: ACM, 2009, pp. 29–44. [Online].
Available:
http://doi.acm.org/10.1145/1629575.1629579

[9] C. Bienia and K. Li, “PARSEC 2.0: A New
Benchmark Suite for Chip-Multiprocessors,” in Proc.
5th Workshop on Modeling, Benchmarking and
Simulation, June 2009.

[10] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou, “Cilk: an
efficient multithreaded runtime system,” in Proc. of
the 12th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming (PPOPP), Aug.
1995, pp. 207–216.

[11] S. Breß and G. Saake, “Why It is Time for a HyPE: A
Hybrid Query Processing Engine for Efficient GPU
Coprocessing in DBMS,” Proc. VLDB Endow., vol. 6,
no. 12.

[12] “C++ AMP : Language and Programming Model,”
http://download.microsoft.com/download/4/0/E/
40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/
CppAMPLanguageAndProgrammingModel.pdf.

[13] “CFS Scheduler,” https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt.

[14] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer,
S.-H. Lee, and K. Skadron, “Rodinia: A benchmark
suite for heterogeneous computing,” in Workload
Characterization, 2009. IISWC 2009. IEEE
International Symposium on, 2009, pp. 44–54.

[15] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax:
Qos awareness and increased utilization for
non-preemptive accelerators in warehouse scale
computers,” pp. 681–696, 2016.

[16] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird,
M. Moretó, D. Chou, B. Gluzman, E. Roman, D. B.
Bartolini, N. Mor, K. Asanović, and J. D.
Kubiatowicz, “Tessellation: Refactoring the os around

explicit resource containers with continuous
adaptation,” in Design Automation Conference
(DAC), 2013 50th ACM/EDAC/IEEE, May 2013, pp.
1–10.

[17] G. F. Diamos and S. Yalamanchili, “Harmony: An
Execution Model and Runtime for Heterogeneous
Many Core Systems,” in Proceedings of the 17th
International Symposium on High Performance
Distributed Computing, ser. HPDC ’08. New York,
NY, USA: ACM, 2008, pp. 197–200. [Online].
Available:
http://doi.acm.org/10.1145/1383422.1383447

[18] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta,
L. Martinell, X. Martorell, and J. Planas, “OmpSs: a
Proposal for Programming Heterogeneous Multi-Core
Architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[19] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.,
“Exokernel: An Operating System Architecture for
Application-level Resource Management,” in
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’95, 1995, pp.
251–266.

[20] H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S.
Woodward, J. D. Brown, and C. L. Johnson,
“Introduction to the wire-speed processor and
architecture,” IBM Journal of Research and
Development, vol. 54, no. 1, pp. 3:1 –3:11,
january-february 2010.

[21] A. Frumusanu, “The Samsung Exynos 7420 Deep Dive
- Inside A Modern 14nm SoC,” http://www.
anandtech.com/show/9330/exynos-7420-deep-dive/2.

[22] “Grand Central Dispatch,”
http://developer.apple.com/library/ios/
#documentation/Performance/Reference/GCD
libdispatch Ref/Reference/reference.html.

[23] J. Giceva, T.-i. Salomie, A. Schupbach, G. Alonso,
and T. Roscoe, “COD: Database / Operating System
Co-Design,” in Conference on Innovative Data
Systems Research (CIDR), 2013.

[24] D. Grewe and M. F. P. O’Boyle, “A Static Task
Partitioning Approach for Heterogeneous Systems
Using OpenCL,” in Proceedings of the 20th
International Conference on Compiler Construction:
Part of the Joint European Conferences on Theory and
Practice of Software, ser. CC’11/ETAPS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 286–305.

[25] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and
P. Ranganathan, “Pegasus: coordinated scheduling for
virtualized accelerator-based systems,” in Proceedings
of the 2011 USENIX conference on USENIX annual
technical conference, 2011, pp. 3–3.

[26] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl, “Hardware-oblivious Parallelism for
In-memory Column-stores,” Proc. VLDB Endow.

[27] M. D. Hill and M. R. Marty, “Amdahl’s Law in the
Multicore Era,” IEEE Computer, pp. 33–38, Jul. 2008.

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: A Platform for Fine-grained Resource Sharing
in the Data Center,” in Proceedings of the 8th
USENIX Conference on Networked Systems Design

and Implementation, ser. NSDI’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 295–308.

[29] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard, “Dynamic Knobs for
Responsive Power-aware Computing,” in Proceedings
of the Sixteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVI. New York,
NY, USA: ACM, 2011, pp. 199–212.

[30] “HSA Intermediate Language,” https://hsafoundation.
app.box.com/s/m6mrsjv8b7r50kqeyyal, May 2013.

[31] Intel Corporation, “Thermal Protection And
Monitoring Features: A Software Perspective,”
http://www.intel.com/cd/ids/developer/asmo-na/
eng/downloads/54118.htm, 2005.

[32] “Intel Sandy Bridge,”
http://software.intel.com/en-us/blogs/2011/01/13/
a-look-at-sandy-bridge-integrating-graphics-into-the-cpu.

[33] B. Jeff, “big.LITTLE Technology Moves Towards Fully
Heterogeneous Global Task Scheduling,”
http://www.arm.com/files/pdf/big LITTLE
technology moves towards fully heterogeneous
Global Task Scheduling.pdf, Nov. 2013.

[34] S. Kanev, J. P. Darago, K. Hazelwood,
P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks, “Profiling a Warehouse-scale Computer,” in
Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’15,
2015, pp. 158–169.

[35] A. Khanna and J. Zinky, “The Revised ARPANET
Routing Metric,” in Symposium Proceedings on
Communications Architectures &Amp; Protocols, ser.
SIGCOMM ’89. New York, NY, USA: ACM, 1989,
pp. 45–56. [Online]. Available:
http://doi.acm.org/10.1145/75246.75252

[36] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer,
“An Automatic Input-sensitive Approach for
Heterogeneous Task Partitioning,” in Proceedings of
the 27th International ACM Conference on
International Conference on Supercomputing, ser. ICS
’13, 2013.

[37] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng, “Merge: A Programming Model for
Heterogeneous Multi-core Systems,” in Proceedings of
the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS XIII. New York, NY, USA:
ACM, 2008, pp. 287–296.

[38] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting
Parallelism on Heterogeneous Multiprocessors with
Adaptive Mapping,” in Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 42, 2009.

[39] “Qualcomm MARE: Enabling Applications for
Heterogeneous Mobile Devices,”
https://developer.qualcomm.com/downloads/whitepaper-

qualcomm-mare-enabling-applications-heterogeneous-mobile-

devices, Apr.
2014.

[40] E. Marth and G. Marcus, “Parallelization of the x264
encoder using OpenCL,”
http://li5.ziti.uni-heidelberg.de/x264gpu/.

[41] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged
Scheduling for Fair, Protected Access to Fast
Computational Accelerators,” in Proceedings of the
19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA:
ACM, 2014, pp. 301–316.

[42] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoffmann,
“A Probabilistic Graphical Model-based Approach for
Minimizing Energy Under Performance Constraints,”
in Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15,
2015, pp. 267–281.

[43] T. P. Morgan, “Oracle Cranks Up The Cores To 32
With Sparc M7 Chip,”
http://www.enterprisetech.com/2014/08/13/
oracle-cranks-cores-32-sparc-m7-chip/, Aug. 2014,
enterpriseTech.

[44] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt, “Helios: Heterogeneous
Multiprocessing with Satellite Kernels,” in Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY,
USA: ACM, 2009, pp. 221–234.

[45] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R. Walker, “Agile
Application-aware Adaptation for Mobility,” in
Proceedings of the Sixteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’97, 1997.

[46] NVidia, Inc., “CUDA Toolkit 4.1,”
http://www.developer.nvidia.com/cuda-toolkit-41,
2011.

[47] “NVIDIA OpenCL SDK,” http:
//developer.download.nvidia.com/compute/cuda/3 0/
sdk/website/OpenCL/website/samples.html.

[48] “The OpenACC Application Program Interface,”
http://www.openacc-standard.org/.

[49] “OpenCL - The open standard for parallel
programming of heterogeneous systems,”
http://download.microsoft.com/download/4/0/E/
40EA02D8-23A7-4BD2-AD3A-0BFFFB640F28/
CppAMPLanguageAndProgrammingModel.pdf.

[50] H. Pan, B. Hindman, and K. Asanović, “Composing
Parallel Software Efficiently with Lithe,” in
Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and
Implementation, ser. PLDI ’10. New York, NY, USA:
ACM, 2010, pp. 376–387.

[51] “Parallel Implementation of bzip2,”
http://compression.ca/pbzip2/.

[52] S. Peter, A. Schüpbach, P. Barham, A. Baumann,
R. Isaacs, T. Harris, and T. Roscoe, “Design
Principles for End-to-end Multicore Schedulers,” in
Proceedings of the 2Nd USENIX Conference on Hot
Topics in Parallelism, ser. HotPar’10, 2010, pp. 10–10.

[53] J. Planas, R. M. Badia, E. AyguadÃl’, and J. Labarta,
“Self-Adaptive OmpSs Tasks in Heterogeneous
Environments,” in Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium
on, May 2013, pp. 138–149.

[54] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta,

“AMA: Asynchronous Management of Accelerators for
Task-based Programming Models,” Procedia Computer
Science, vol. 51, pp. 130–139, 2015.

[55] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta,
“SSMART: Smart Scheduling of Multi-architecture
Tasks on Heterogeneous Systems,” in Proceedings of
the Second Workshop on Accelerator Programming
Using Directives, ser. WACCPD ’15. New York, NY,
USA: ACM, 2015, pp. 1:1–1:11.

[56] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel, “PTask: Operating System Abstractions
To Manage GPUs as Compute Devices,” in
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011, pp. 233–248.

[57] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov,
“A Comprehensive Scheduler for Asymmetric
Multicore Systems,” in Proceedings of the 5th European
Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 139–152.

[58] A. Sb̂ırlea, Y. Zou, Z. Budimĺıc, J. Cong, and
V. Sarkar, “Mapping a Data-flow Programming Model
Onto Heterogeneous Platforms,” in Proceedings of the
13th ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, Tools and
Theory for Embedded Systems, ser. LCTES ’12. New
York, NY, USA: ACM, 2012, pp. 61–70.

[59] M. Shoaib Bin Altaf and D. Wood, “LogCA: A
Performance Model for Hardware Accelerators,”
Computer Architecture Letters, vol. PP, no. 99, pp.
1–1, 2014.

[60] M. Silberstein, B. Ford, I. Keidar, and E. Witchel,
“GPUfs: integrating a file system with GPUs,” in
Proc. 18th ASPLOS, 2013, pp. 485–498.

[61] S. Sridharan, G. Gupta, and G. S. Sohi, “Adaptive,
Efficient, Parallel Execution of Parallel Programs,” in
Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, ser. PLDI ’14, 2014, pp. 169–180.

[62] “StarPU Task Scheduling Policy,” http:
//starpu.gforge.inria.fr/doc/html/Scheduling.html.

[63] J. Stratton, C. Rodrigues, I. Sung, N. Obeid,
L. Chang, N. Anssari, G. Liu, and W. Hwu, “Parboil:
A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” Center for
Reliable and High-Performance Computing, 2012.

[64] N. Sun and C.-C. Lin, “Using the Cryptographic
Accelerators in the UltraSparc T1 and T2 Processors,”
http://www.oracle.com/technetwork/server-storage/
archive/a11-014-crypto-accelerators-439765.pdf, Nov.
2007.

[65] M. B. Taylor, “Is dark silicon useful?: harnessing the
four horsemen of the coming dark silicon apocalypse,”
ser. DAC ’12.

[66] “Truecrack,” https://code.google.com/p/truecrack/.

[67] C. A. Waldspurger and W. E. Weihl, “An
Object-oriented Framework for Modular Resource
Management,” in Proceedings of the 5th International
Workshop on Object Orientation in Operating Systems
(IWOOOS ’96), ser. IWOOOS ’96, 1996.

