
Firestorm: Operating Systems for
Power-Constrained Architectures

Sankaralingam Panneerselvam and Michael M. Swift
Computer Sciences Department, University of Wisconsin–Madison

{sankarp, swift}@cs.wisc.edu

Abstract
The phenomenon of Dark Silicon has made processors over-
provisioned with compute units that cannot be used at full
performance without exceeding power limits. Such limits
primarily exist to exercise control over heat dissipation. Cur-
rent systems support mechanisms to ensure system-wide
guarantees of staying within the power and thermal limit.
However, these mechanisms are not sufficient to provide
process-level control to ensure applications level SLAs:
power may be wasted on low-priority applications while
high-priority ones are throttled.

We built Firestorm, an operating system extension that
introduces power and thermal awareness. Firestorm consid-
ers power a limited resource and distributes it to applications
based on their importance. To control temperature, Firestorm
also introduces the notion of thermal capacity as another
resource that the OS manages. These abstractions, imple-
mented in Firestorm with mechanisms and policies to dis-
tribute power and limit heat production, help applications
to achieve guaranteed performance and stay within the sys-
tem limits. In experiments, we show that Firestorm improved
performance by up to 10% by avoiding thermal interference
and can guarantee SLAs for soft real time applications in the
presence of limited power and competing applications.

1. Introduction
Moore’s law paved the way for doubling the transistors in
the same chip area by reducing transistor sizes with every
generation while also scaling voltage down. However, with
the end of Dennard’s scaling, voltage and hence the power
draw of transistors is no longer dropping proportionally to
size. As a result, modern processors cannot use all parts of
the processor simultaneously without exceeding the power
limit. This manifests as an increasing proportion of dark
silicon [7]. In other words, the compute capacity of current
and future processors is and will be over-provisioned with
respect to the available power.

Power limits are influenced by different factors such as
the capacity of power distribution infrastructure, battery sup-
ply limits, and the thermal capacity of the system. Power
limits in datacenters can arise from underprovisioning power

distribution units relative to peak power draw. Energy limits
are also dictated by the limited capacity of batteries. How-
ever, in many systems, the primary limit comes not from the
ability to acquire power, but instead from the ability to dis-
sipate power as heat once it has been used.

Thermal limits are dictated by the physical properties
of the processor materials and also comfort of the user—
people do not want their legs scorched when sitting with a
laptop. Thus, power is limited to prevent processor chips
from over-heating, which can lead to thermal breakdown.
As a result, the maximum performance of a system is lim-
ited by its cooling capacity, which determines its ability to
dissipate heat. Cooling capacity varies across the comput-
ing landscape, from servers with external chilled air to desk-
tops with large fans to laptops to fan-less mobile devices.
Furthermore, cooling capacity can change dynamically with
software-controlled fans [32] or physically reconfigurable
systems, such as dockable tablets [33].

Processors support mechanisms to enforce both power
and temperature limits. For example, recent Intel proces-
sors provide Running Average Power Limit (RAPL) coun-
ters to enforce a power limit on the entire processor [27]. In
software, power capping services, such as the Linux power
capping framework [25] uses these limits to control power
usage. Processor vendors define a metric Thermal Design
Power (TDP) for every processor model to guide the re-
quirements of the cooling system needed to dissipate power.
Most processors have a safeguard mechanism that throttles
the processor by reducing the frequency or duty cycle (frac-
tion of cycles where work happens) on reaching a critical
temperature. In software, the thermal daemon [34] aims to
increase performance by deploying increasing cooling (e.g.,
increasing fan speed) if possible before resorting to throt-
tling.
Challenges. The drawback with current hardware and soft-
ware mechanisms that enforce power and thermal limits are
that they only offer system-wide guarantees but do not en-
able application-level guarantees.
Power distribution: When power is limited, current systems
(hardware and software) throttle all applications equally.
However, this approach ignores users’ scheduling priorities:



power should be distributed among applications based on
their importance, so that high-priority applications can use
more power to run faster, while low-priority applications
have their power reduced and bear most of the performance
lost.
Thermal interference: An application that makes heavy use
of a processor can trigger temperature throttling that reduces
CPU frequency or duty cycle. This can affect all cores, and
hence all running applications. Furthermore, throttling stays
in effect for a while as the processor cools. As a result, a low
priority or malicious application can trigger throttling that
reduces the performance of high-priority applications.
Performance Boosting: Applications may be able to tem-
porarily overclock the core to achieve extra performance if
they run for short enough periods that throttling does not get
triggered. This is often called computational sprinting [26].
Turbo Boost in Intel processors [12] is similar but more con-
servative. Such sprinting techniques require enough thermal
headroom to run without overheating and also requires the
processor stay cool between activities.
Prior work. There has been a great deal of prior work with
respect to power and thermal management. They can be clas-
sified under the theme of improving performance (e.g., [14])
or energy efficiency (e.g., [31]), and minimizing interference
within a power or thermal limit (e.g., [8]). These works differ
from ours in that they assume a homogeneous set of appli-
cation performance goals, while our work deliberately tar-
gets systems that run a mix of soft real time, best effort, and
background tasks. Also, power and thermal capacity are de-
pendent on each other, where one without another does not
guarantee performance. Power without thermal capacity re-
sults in throttling and thermal capacity without power results
in low performance. Our system takes a holistic view on both
power and thermal capacity by allowing applications to co-
allocate them for better performance.
Firestorm. Just as the OS actively manages resources such
as CPU and memory, we argue that operating systems should
treat power and thermal capacity as primary resources in the
system. Towards this goal, we built Firestorm, which extends
Linux with power and thermal awareness. Firestorm intro-
duces new abstractions to manage power and thermal capac-
ity; new interfaces are added (a) for applications to gather
power and thermal resources, and allow application-specific
use of power and thermal capacity for guaranteed perfor-
mance; and (b) to support policies to balance the varied per-
formance requirements of different applications.

Firestorm requires all applications to gather power be-
fore executing their tasks on any compute unit (e.g., CPU
or GPU). This is enforced through agents that act as re-
sources managers for each type of compute unit. The agent
predicts the power requirement of a task using a compute-
unit-specific power model and tries to acquire the required
power from a centralized power center. The center employs

a proportional share policy to distribute power, which iso-
lates applications from each other. When sufficient power is
not available, the agent runs a task at lower power and hence
lower performance.

In order to support the thermal requirements of high-
priority programs, Firestorm introduces a new thermal con-
serve policy that allows applications to reserve thermal ca-
pacity (i.e., keep the processor cooler) needed during exe-
cution. Thus, the system does not allow other applications
to exhaust the thermal capacity by raising the temperature
too high. Firestorm incorporates a system-specific thermal
model to predict the thermal capacity needed based on the
work to be performed by an application. Firestorm also ex-
tends Chameleon’s [21] execution object abstraction to cre-
ate thermal headroom for sequential applications. This is
done by creating execution object over multiple cores where
few cores are forced to an idle state and the resultant power
savings is used to boost the performance of the active cores.

For cases where applications do not reserve thermal ca-
pacity, Firestorm supports a selective throttling policy to iso-
late applications from thermal interference caused by back-
ground or low priority applications. When the processor is
nearing the critical temperature (temperature beyond which
processors can breakdown), power given to low priority ap-
plications is reduced. This preserves the performance of im-
portant applications at the cost of low priority applications.

The contributions of Firestorm include actively allocating
power to applications, reserving thermal capacity for high-
priority applications, designing a set of interfaces a system
requires from a power and a thermal model for making
power management decisions, and simple power and thermal
models that are fast and simple enough to deploy practically.

Through experiments we show that Firestorm is able to
assign more power to applications with higher shares and
prevent interference from lower priority programs. Firestorm
also balances the performance of multiple applications un-
der a power budget compared to the native Linux RAPL
mechanism that prefers parallel programs over sequen-
tial programs. In a case where thermal interference from
background application costs performance, Firestorm allows
high-priority tasks to run at full speed, as compared to 19%
slower under native Linux, while background tasks run 28%
slower to reduce heat production.

2. Background and Motivation
2.1 Background
The power consumption of processors is usually dependent
on the speed (frequency) at which it operates. Higher perfor-
mance can be achieved by feeding more power to the com-
pute units in the processor. However, the increase in power
consumption results in increased heat dissipation.
Power controls. Power limits exist at a processor level to
either control heat production or to limit system power to
what is available from the power infrastructure (e.g., PDU

2



capacity). Power limits can be enforced in two ways. First,
by fixing the maximum frequency for the processor, a max-
imum bound on the power consumption can be established,
although actual power can vary widely based on the work-
load. Second, by fixing the actual power consumption, pro-
cessors can be run at any frequency as long as they stay
within the power limit.

Most current processors support both mechanisms. In In-
tel processors, the RAPL mechanism runs cores at max-
imum core frequency possible and then throttles the fre-
quency when power consumption exceeds a specified limit.
Also, as their processors do not support per-core DVFS, the
frequency of all cores will be reduced uniformly when throt-
tled.

The DVFS (Dynamic Voltage Frequency Scaling) mech-
anism increases/decreases performance by altering the volt-
age and frequency level of the processor. Since the dynamic
power consumption is proportional to square of voltage and
frequency, power savings by reducing performance level is
higher. Intel and AMD processors support different power
planes for CPU and on-chip GPU, and thus the chip offers
two voltage regulators for each of them. This is also why
per-core DVFS is not possible, since a single regulator con-
trols the voltage/frequency controls of all cores. On the other
hand, duty cycle modulation (stopping the clock for short
periods of 3µs at regular intervals) can operate at individ-
ual cores but it does not change the voltage. As a result, the
power savings achieved by duty cycle modulation is below
DVFS for the same performance.
Thermal Controls. Thermal limits ensure protection of the
processor from thermal breakdown due to overheating or
to stay within the user comfort zone. Though power con-
trols can control heat dissipation, a conservative power limit
can result in reduced performance. Sequential applications
prefer high frequency cores resulting in high power density.
This can result in thermal hotspot although the processor is
within its power limit.

Similar to the RAPL mechanism, processors throttle
compute units when the chip temperature reaches the crit-
ical temperature (temperature beyond which processors can
breakdown). Throttling can either be reducing the frequency
or the duty cycle (stopping the clock for short periods of
3µs at regular intervals) of the cores or idle thread injec-
tion [24]. All compute units are throttled to get the chip back
to safer thermal zone. Systems with variable fan speeds can
step up fan speeds as they nears critical temperature. These
policies are implemented either in BIOS or by the operating
system. Processor stay in the throttled state (lower frequency
or higher fan speed) for an extended period of time before
moving to a normal state to avoid oscillations in and out of
the throttling state.

2.2 Motivation
Though processors expose mechanisms to support power
and thermal management, they are not sufficient or too
coarse-grained to provide process-wide performance guar-
antees. Current mechanisms are only sufficient to enforce
system-level power or thermal limits.

2.2.1 Heterogeneity in Demands
We see at least three reasons on why unequal power distribu-
tion among applications is important. First, applications may
use power differently to accomplish their goals. Sequential
programs may want to power a single core as high as pos-
sible, while parallel programs may be faster when spread-
ing power across as many cores as possible. Batch programs
may run for long periods at a lower power level, while inter-
active applications do best with a high-power burst of activ-
ity.

Second, within a single system users may have different
performance goals for programs. For example, on servers an
administrator may want to dedicate power to latency-critical
applications at the expense of background batch jobs [15].
On mobile systems, an interactive application may be pri-
oritized for more power and performance than background
applications.

Third, hardware itself is becoming heterogeneous, and
may have a mix of CPU cores (e.g., ARM’s big.LITTLE ar-
chitecture with in-order and out-of-order cores) or both CPU
and GPU cores as in AMD’s APUs and Intel’s recent proces-
sors. The power demand of each type of processing unit can
be very different: applications may need more power to use
a GPU or big CPU, but receive a super-proportional speedup
by doing so. It should be noted that the power requirements
of each compute unit varies.

However, the mechanisms supported in current proces-
sors for power distribution across different compute units are
not sufficient as discussed below.
CPU-GPU Power Distribution. On processors with inte-
grated GPUs, current hardware and software cannot ad-
equately control power across both the GPU and CPU
cores. For power management, Intel places them on differ-
ent power planes thereby enabling individual voltage regula-
tors, and hence frequencies, for each compute units. Through
a machine-specific-register (MSR), software can configure
the power distribution between CPU and GPU. However, the
mechanism does not directly control the power consumption
of the two planes: for the same MSR value, the power distri-
bution ratio varies with the number of active CPU cores as
well as the total power limit for the processor. Thus, actually
controlling power use across both CPU and GPU requires
modifying the power distribution (MSR input) when either
of the impacting factor changes.
Turbo Boost. Current processors have mechanisms that au-
tomatically boost frequencies when there is power/temper-
ature headroom, but this may not always improve perfor-

3



60

70

80
Chip	temprature	in	Celsius

0.75

0.85

0.95

1.05
Foreground	Application

Time	in	Seconds
0.75

0.85

0.95

1.05
Background	Application

Figure 1. Thermal Interference

mance. Processors from Intel [12], AMD [2] and Sam-
sung [3] boost single-core frequency when neighboring
cores are in idle state, indicating there is thermal head-
room. However, prior work [16] has shown that such ag-
gressive approach does not always equate to higher perfor-
mance because not all applications (memory bound) bene-
fit from high frequency. This opportunistic mechanism ac-
tivates turbo boost whenever thermal headroom is avail-
able rather than using it when needed. So, applications that
can potentially benefit from the additional frequency cannot
leverage turbo boost if no thermal headroom is available.

2.2.2 Reactive Throttling
Current processors enforce thermal limits by throttling the
entire processor when the critical temperature is reached.
However, activity from low-priority tasks on one core can
cause throttling of high-priority tasks on others if the former
raise the temperature too high [15]. Figure 1 shows a simple
example plotting the performance of a primary and a back-
ground application over time when run together. It can be
noted that the performance of both applications follow sim-
ilar pattern of drops over time due to throttling. As the pro-
cessor temperature reaches the critical temperature, the ther-
mal daemon [34] reduces the frequency of the entire proces-
sor. The expected behavior is that primary application per-
formance should not be impacted whereas the background
application can be throttled. However, current systems only
seek system-wide guarantees and hence throttle the entire
system uniformly.

Low priority application can impact other applications
even when it is not running alongside them by exhausting
the thermal capacity. In cases where a user wants to run
a high-priority task overclocked for a short period [26], a
background task that already raised the processor to its ther-
mal limit can prevent overclocking, as their is no thermal
headroom to further increase frequency. If thermal capac-
ity is treated as a resource by the OS, it can allocate the re-
quired thermal capacity to the primary application, so the
background application will be forced to run at lower fre-
quency.

2.	Power	Tickets	
Collection

Application	1

Application	2

Application	3

GPU	
Agent

CPU	
Agent

Power	
Center

Thermal	
Monitor

User	Mode Operating	System Hardware

1.
	T
as
k	
Di
sp
at
ch

3.
	S
et
	p
-s
ta
te
	a
nd

	ta
sk
	o
ffl
oa
d

Figure 2. Control flow in Firestorm

3. Design
Firestorm is an extension to Linux that introduces power
and thermal awareness in the operating system. The system
associates performance requirements of applications with
power and thermal requirements. Firestorm enables OS to
manage them as primary resources in the system and thus
allowing applications to allocate/reserve power and thermal
capacity from the system.

Every application in the system receives shares based on
their importance (§ 3.1). They get access to resources such
as power and thermal capacity based on their shares (§ 3.2
and § 3.3). Any request for computation goes through agents
(§ 3.2), compute unit-specific resource managers, that con-
trols performance based on the power and thermal capacity
available to the application (based on its shares). The overall
flow diagram of Firestorm is shown in figure 2.

The major design goals for Firestorm are:

1. Power and Thermal capacity as resources. Just as pro-
cessors allocate memory and processor time, Firestorm
should explicitly control allocation of power and thermal
capacity to applications.

2. Isolation. Low-priority or malicious applications should
not impact other applications due to lack of energy or
thermal capacity.

3. Performance guarantees. Applications with strong guar-
antees, such as latency or soft real-time constraints
should be guaranteed power thermal capacity to meet
deadlines.

A quick note on terminology: we use the words applica-
tion and program interchangeably, and the term processing
units or compute units refers to units such as CPUs, GPUs,
and accelerators. A task is a coarse-grained functional block
such as a parallel region or function that executes to comple-
tion.

3.1 Application Classes
Inspired by the different scheduling classes in Linux,
Firestorm divide applications into three different classes.
The classification helps to understand the importance of the
applications and thus how stringent their requirements are.

4



The policy decisions — power distribution and preserving
thermal capacity — are devised based on the applications
classes as can be seen in later sections.

• Soft Real-Time. Applications with performance guaran-
tees in terms of SLAs, either periodic or latency limits.

• Best Effort. Applications without guarantees that still
desire the highest performance based on available re-
sources.

• Background. Applications where performance is not a
primary goal.

Soft real-time applications are guaranteed power and
thermal headroom to meet their performance needs, but re-
quire admission control from the system to avoid overcom-
mitting resources. Best-effort applications can fully utilize
systems resources as long as soft real-time applications are
ensured guaranteed performance. Background or low prior-
ity applications are typically not user facing (e.g,. data scrub-
bing) and do not have stringent performance requirements
and should not interfere with applications in other classes.
We follow the design principles of previous systems [15]
where we give up on background performance to ensure
guaranteed or high performance for applications belonging
to other classes.
3.2 Power as a Resource
Firestorm focuses on power-limited architectures where all
compute units cannot be used at maximum performance
within the power budget. The system enforces control over
the total power consumed by processing units as well as the
power consumed by individual applications. To keep the sys-
tem within power limits, Firestorm ensures that there is suffi-
cient power before allowing an activity to proceed. Note that
our focus is power and not energy, although energy-efficient
computations are complementary to using Firestorm’ mech-
anisms.
Abstraction. Firestorm abstracts the notion of power in the
form of power tickets [28, 39] to quantify power as a re-
source in the system. A power ticket represents the ability to
use power: for example, a ticket represents the ability to use
one-hundredth of a watt. The difference in power consump-
tion between neighboring frequency levels and duty cycle
levels is less than one tenth of a watt for some frequency
ranges. We therefore designed the power tickets to be fine
grained (rather than a full watt) to capture these differences.
The power limit of a processor or system is expressed as a
limit on the total number of tickets in use. Thus, dynami-
cally reducing the power limit reduces the number of tickets
available. Tickets are managed by one or more power cen-
ters (one per power socket) that acts as a power source(s) of
the system and agents request tickets from power center on
behalf of the application (discussed under mechanism).

Every power center in the system act as an independent
power zone (e.g., one for each socket, one for off-chip GPU).
A single centralized power center can become a bottleneck

bogged, and having multiple power centers provides the
ability to scale with multiple sockets. To use a compute unit,
agents contact just the power center hosting unit without
affecting other power centers. System-wide power limit can
be enforced by ensuring the sum of tickets across all power
centers is below the limit. Tickets can also be transferred
between centers for long-term power shifting, similar to load
balancing of threads across cores and sockets.
Mechanism. In Firestorm, power-consuming portions of the
system are controlled by an agent that ensures power is avail-
able to use the component. An agent is a resource manager
for a single type of compute unit and thus every compute
unit (CPU, GPU or other accelerators) has its own agent.
It also acts as a bridge between applications and compute
units similar to a device driver. Applications offload tasks
to agent and the agent is responsible for gathering sufficient
power tickets from power center on behalf of the application
before running the task on the compute unit. The respon-
sibility of an agent is two-fold: (a) It gathers power tickets
from the power center on behalf of the application and re-
turn the tickets back after task completion. (b) It calculates
the number of tickets needed to run a task on the compute
unit it manages; more efficient devices require fewer tickets
than power-hungry devices, and computations that require
less power (e.g., are memory bound) similarly require fewer
tickets.

Firestorm employs a pay-before-use model, to ensure the
performance of an application is proportional to the power
received and also to stay within power limits. Long-running
applications in Firestorm can not accumulate power tickets,
and applications that are waiting or suspended use no tickets.

Before executing a task, the agent consults its power
model (explained in § 4) to determine how many tickets are
needed to execute at highest possible p-state (performance
level), and requests those tickets. Based on the number of
tickets received, the agent configures the hardware to limit
its power draw to the amount allocated with help from the
power model, such as by lowering frequency/voltage/duty
cycle.
Policy. The initial number of power tickets in the power cen-
ter is set by the administrator, and indicates the power limit
for the system. Soft real-time applications reserve power
tickets to ensure they have adequate power to execute. The
remaining power tickets are shared by applications in best-
effort and background class. Every application in the sys-
tem is assigned shares, and the power center employs a pro-
portional share policy for power distribution across applica-
tions. Firestorm also incorporates an additional admission
control policy for background class to minimize interfer-
ence. Background applications execute either when there are
no active applications from other classes or a minimum of
50% of total tickets are totally unused (left after allocation
to real time and best-effort class) and available in the power
center.

5



Firestorm uses a proportional min-funding mecha-
nism [36] to allocate excess power capacity. If a task requires
fewer tickets than an application possesses, the power cen-
ter re-allocates excess tickets to other applications that could
use more power, proportionally to the share of each applica-
tion. For example, assume application A has shares sufficient
to gather 25 power tickets but wants to use a GPU that can
consume only 15 tickets even at highest performance. Rather
than under-utilizing the extra 10 shares, the power center re-
allocates those tickets to other applications proportional to
the number of shares they have. Firestorm supports preemp-
tion of power tickets when application shares change or a
new application (soft real-time or best effort) enters the sys-
tem. The share allocation is automatically readjusted by the
proportional share policy.

3.3 Heat as a Resource
Firestorm takes initial steps toward introducing thermal
awareness into operating systems. It avoids or minimizes
thermal interference caused by low-priority applications and
also allows applications to reserve thermal capacity to en-
sure guaranteed performance. The above are made possible
by promoting thermal capacity as a primary resource in the
system.
Abstraction. The thermal capacity of the system is generally
defined as the amount of heat needed to raise the system’s
temperature by one degree [38]. However, to measure the
thermal capacity requires knowing the material composition
of the heat sink and also properties of the cooling devices
(e.g., fan) used. To avoid this complexity, we instead abstract
the thermal capacity of the system in terms of the processor
chip temperature. The difference between the current chip
temperature and the critical temperature is the available ther-
mal capacity of the system. To make it usable, we build a
model that predicts the amount of time required for the chip
temperature to rise from a start temperature to an end tem-
perature. The model is based on the amount of work done by
the processor which is captured in terms of the power con-
sumption of the compute units. More details on the thermal
model are discussed later in § 4.2.
Mechanism. Firestorm incorporates a thermal monitor
whose goals are to avoid thermal interference and reserve
thermal capacity. The first goal is achieved by adding a mon-
itor service that periodically reads the processor temperature
sensors to check whether the temperature is nearing the crit-
ical temperature. The monitor takes action to reduce temper-
ature through throttling, which lowers the frequency or duty
cycle of compute units. This is achieved by notifying the
power center to lower the number of power tickets issued
to the agents on behalf of applications. The second goal is
achieved by exposing a set of interfaces for applications to
reserve thermal capacity based on their workload demands.
Policy. The monitor offers two set of throttling policies each
targeting different class of applications.

The objective of the selective throttling policy is to min-
imize thermal interference due to low priority applications
and thereby trade off the performance of background ap-
plications for other applications classes. Firestorm uses se-
lective throttling for best-effort and background applica-
tions classes. This policy employs a reactive approach in
keeping within thermal limits similar to the Linux thermal
daemon service [34]: the system only takes action when it
reaches a temperature limit. In order to avoid interference
caused by background applications, the policy employs a
two-stage throttling mechanism based on two temperature
limits — a lower background trip temperature and a higher
best-effort trip temperature. The lower-stage throttles back-
ground applications when the chip temperature reaches the
background trip temperature value. The higher-stage gets ac-
tivated when the chip temperature exceeds the best effort trip
temperature value, and throttles applications from both back-
ground and best-effort class.

The monitor differs from normal reactive approach by
choosing which applications to throttle and thus trades off
their performance for others. Throttling is done by reduc-
ing the power tickets given to the applications. The monitor
conveys two set of information to the power center: (a) ap-
plication class to be throttled (b) how much throttling as a
percentage reduction in power tickets. The effectiveness of
throttling depends on how high the chip temperature is com-
pared to the trip values. A large difference demands more
throttling and hence a higher reduction in power tickets. It
should be noted that best-effort applications also get throt-
tled if throttling background applications is not sufficient to
keep within thermal limits. However, background applica-
tions get throttled more than best-effort applications.

The thermal conserve policy is used for soft real time ap-
plications that require guaranteed performance. As discussed
before, low priority applications can heat up the processor
(exhaust thermal capacity) so much that subsequently sched-
uled applications cannot run at full performance without get-
ting throttled (lack of thermal capacity). In other words, low-
priority applications can affect soft real-time applications
by making them miss deadlines/guarantees. For example, in
data centers, latency-critical jobs and batch jobs are often
scheduled in the same hardware for better utilization. These
thermal problems have been shown to be possible in such
cases [15]. To avoid this problem, Firestorm allows soft real
time applications to reserve the required thermal capacity.

The policy requires knowing in advance the amount of
work to be done by the soft real-time application to ensure
sufficient thermal capacity is available. The work may be
either a high-intensity task running quickly for a medium-
intensity task for a longer period. The amount of work is
captured by knowing how long an application will run for,
and how much power it consumes while it is running, as the
power is dispersed as heat. The former value can be pre-
dicted by the scheduler from past behavior or provided ex-

6



plicitly by the application as a periodic scheduling require-
ment. The latter value is obtained by predicting the power
consumption of the application through the power model.
With these numbers, a thermal model can compute the initial
chip temperature that should be set for the application to run
unthrottled. In other words, the thermal model computes the
minimum thermal capacity needed for the application to run
unthrottled. This temperature value is set as the best-effort
trip temperature and the background trip temperature is also
modified accordingly. Thus, the policy makes sure that even
while background or best-effort applications are running, the
reserved thermal capacity is available.

3.4 Support for Power Density
Sequential applications deploy all their gathered power on to
a single CPU core to run at a high frequency. However, such
increased power density can lead to the CPU core becoming
a thermal hotspot. Current processors make sure that suffi-
cient thermal headroom is available (other CPU cores are
not dissipating any heat) before actually boosting the CPU
frequency [2, 3, 12]. This is complementary to the thermal
conserve policy where thermal capacity is created rather than
preserved. Firestorm includes a new execution object ab-
straction for sequential applications to create thermal head-
room enabling software controlled turbo boost. This is in
contrast to the current hardware mechanism (§ 2) where pro-
cessors activate turbo boost when possible instead of when
needed.
Abstraction. The execution object abstraction can be
viewed as the combination of execution context with
high power density along with required thermal capacity.
Firestorm uses execution object to create thermal headroom
for sequential applications where all CPUs constituting the
execution object except the active CPU are treated as heat
sink for the active CPU. The number of CPUs in the execu-
tion object is proportional to the thermal headroom required.
Sequential applications need to request the kernel for an ex-
ecution object with the required amount of thermal head-
room during its start time. The abstraction is inspired from
Chameleon [21] that uses the abstraction to represent an ex-
ecution context formed from multiple CPU cores in dynamic
processors.
Mechanism. The execution object supports two operations:
activate and deactivate. Only after gathering sufficient power
credits to run at high frequency can an execution object
be activated. Activation involves creating thermal headroom
and boosting the frequency of the active CPU. This is trans-
lated to forcing the constituent CPUs to idle state (except
active CPU), increasing the frequency of the active CPU
and allowing the sequential application to run on the active
CPU. This mechanism is compatible with current processors
where Turbo Boost is automatically activated by the proces-
sor after execution object activation. Deactivation involves

the reverse process where the constituent CPUs are no longer
forced to idle state but allowed to run other threads.
Policy. The policy is responsible for making a decision on
whether to activate an execution object or not when re-
quested. Naively activating an execution object upon re-
quest will prevent other applications from executing since
idle threads are forced on other CPUs. The policy strives
to balance the requirements for sequential and other applica-
tions in the system. Firestorm introduces a configurable knob
called turbo tax and it allows the system to to favor sequen-
tial or parallel applications or even take a middle ground.

4. Implementation
We implemented Firestorm as an extension to the Linux-
4.3.0 kernel. The code changes can be attributed to two
major components.

• Power management, including power tickets, agents,
power model, frequency balancer and the power sync.

• Thermal management that includes the thermal model
and the thermal monitor service along with its policies.

Most code changes were made in the kernel by adding
new functionality with a few minor changes to the Linux
scheduler to incorporate CPU agents and operations on exe-
cution object (activation and deactivation). The total imple-
mentation efforts include around 2400 lines of code added
to the kernel.
4.1 Power-Aware Scheduling
Firestorm’s power-aware scheduling consists of the power
center, which manages power tickets; agents that enforce
power limits; and a power model for CPUs and GPUs to pre-
dict power consumption. We use Intel’s clock-modulation
feature (also called a duty-cycle mechanism) [13] on CPU
cores as a means to reduce performance and thus reducing
power, since DVFS cannot be set for each core in our sys-
tem.
Power Model. We built a simple power model based on lin-
ear regression for individual CPU cores through offline anal-
ysis. This requires a one-time profiling stage when Firestorm
runs for the first time. The profiling stage involves running
the SPECCPU 2006 workload suite and measure the power
consumption of every workload at different frequencies. We
found that integer and floating-point instructions per cycle
(IPC and FPC) have high correlation with the CPU power
consumption in our test platform. We used the Intel energy
performance counter registers to measure the power con-
sumption of the chip. The current model does not support
hyperthreading, which introduces additional modeling and
control complexities and is left for future work. We built a
linear regression model based on these data where the IPC,
FPC, frequency and the duty cycle are input to the model
and the model predicts the power consumption of the thread
running on a CPU core.

The measured chip power includes cores as well as the
LLC and other shared structures. To separate out the cost

7



of using a core, we ran a single benchmark on one to four
cores and measured the power consumption. We found that
power increased linearly, indicating that the per-core cost is
the delta in power draw when enabling an additional core.
The computed power with zero cores constitutes the LLC
and shared structure power.

The CPU agent measures IPC and FPC for every running
thread and use the model to predict the maximum power
needed to run the application thread. When a thread is con-
text switched in, the agent contacts the power center to re-
quest tickets for this maximum power. If the power center
does not return the requested tickets, the agent again uses
the power model, but this time to determine the highest duty
cycle that can be used with the available power.

The GPU agent works similarly. Since most GPU drivers
are closed source, we instrument applications to call the
GPU agent before task launch to gather power tickets and
after task completion to return the tickets. We are still in
the process of building a regression based power model for
on-chip GPUs. Instead, we run our workloads on the GPU
at different frequencies and record the power consumption.
The results populate a table for each application, which is
later used during experiments to predict the power draw of
the same GPU workloads.

Firestorm can operate with different power models for
compute units as long as they expose the required interfaces
for agents to use them. The list of interfaces to be supported
by a power model is given in Table 1.
Frequency Balancer. Intel processors only support a sin-
gle voltage domain for all CPU cores in a socket. Firestorm
must determine an ideal processor frequency to ensure over-
all system throughput despite supporting heterogeneous per-
formance demands from applications. We observe that most
workloads perform better by reducing frequency rather than
duty cycle: a thread running at 25% duty cycle at 3 GHz fre-
quency consumes same power as one running at 100% duty
cycle at 2.4 GHz frequency, but performs much worse

To avoid over-reliance on duty cycle, Firestorm does not
run the processor at the highest frequency requested by an
active application. Rather, the balancer of the power center
tracks the power tickets given to active threads on all CPU
cores. In case of parallel programs, we consider only the re-
quest of the primary thread (thread 0) of that program. The
balancer identifies the maximum frequency at which each
thread could have run with the obtained power tickets. We
call this the ideal frequency of the thread. We aggregate the
ideal frequency of all active threads to calculate the time-
average ideal frequency for all running threads, and select
that as the running frequency of the processor. A frequency
balancing thread runs periodically every 1 second to recalcu-
late the ideal frequency value. The long interval was picked
to amortize the cost of voltage-frequency switching, which
is around 50ms.

Applications belonging to the background classes are not
considered for these frequency calculation to avoid any in-
terference with other applications. Conversely, if there are
applications in the soft real time class, their its frequency
request is chosen as the current frequency ignoring any re-
quests from the best-effort class.
Errors in Power Model. In order to cope with the errors in
the power model, the power center has a feature called power
sync that recalibrates the ratio of power tickets to watts.
Errors in power model can either underprice or overprice the
power tickets required for a task. The former leads to using
fewer power tickets than the actual power consumed, and
the latter results in requiring more power tickets for should
be needed.

Underpricing can thus cause the system to exceed
the power limit even without spending all power tickets.
Firestorm avoids this by leveraging the RAPL power limit
register. In addition to limiting the total number of power
tickets in the system, Firestorm configures the RAPL register
to stay within the power budget. Even if power budget is ex-
ceeded without consuming all power tickets, the RAPL unit
will avoid from exceeding the budget. Overpricing is han-
dled by power sync. For processing units that report power
usage, such as Intel Sandy Bridge and later CPUs, the power
sync service measures the actual power usage and compares
it against the number of tickets in use. If power consumption
is below power tickets spent (overpriced), the power sync
mechanism creates more power tickets to increase power
consumption, and does nothing for the underpriced case
since it is taken care by the RAPL budgeting mechanism.
It should be noted that the power correction happens for the
entire system and not per application.
Interactive services. Interactive threads run for a short pe-
riod and contribute little to long-term power consumption.
Furthermore, the require low latency. Firestorm therefore
classifies some threads as interactive services and does not
require them to gather power tickets before execution nor run
at a reduced duty cycle. All system threads are considered
interactive and application threads whose execution time is
below their sleep time (maintained by the kernel in their task
structures) are also considered interactive.

4.2 Thermal Isolation
The thermal monitor service in Firestorm ensures that no
single application overly consumes thermal capacity (i.e.,
overheats the system) and triggers throttling that hurts the
performance of other applications.
Thermal Model. Similar to the power model, Firestorm in-
corporates a machine-specific thermal model that depends
on the type of cooling available and its current state (e.g.,
current fan speed) in the system. We modeled the tempera-
ture trend using a logarithmic regression model where power
consumption and time are inputs. It outputs the maximum
temperature of the chip at that particular time.

8



Type Interfaces Description

Power
maxpower for task (task

metrics, frequency)

Given the task characteristics, return the maximum number of power tickets
needed. CPU model in Firestorm takes IPC, FPC, frequency (current processor
frequency) as inputs. GPU model takes SM (Streaming multiprocessor) utiliza-
tion as task metric predict the power.

Model maximum pstate (task

metrics, power)

The maximum performance state at which a given task can run with the given
number of power tickets. For CPUs, Firestorm returns the duty cycle at which
the CPU core can run at current processor frequency. For GPU, returns the
frequency at which it can run.

maximum frequency (task

metrics, power)

The maximum frequency at which the task can be run using the given power
tickets at 100% duty cycle.

Thermal
calculate temperature

(power, time)

Returns the processor temperature at a particular time with the given amount of
work (power).

Model critical temperature duration

(current temperature, power)

Returns the time taken to reach the critical temperature given the power con-
sumed by the application.

thermal capacity needed

(power, time)

Returns the minimum thermal capacity (starting temperature) needed if the ap-
plication runs for time interval ’time’ without exceeding the critical tempera-
ture.

Table 1. Power and Thermal Model Interfaces

We use a single profiling stage to measure the thermal
performance of the system, which generates a model that can
be saved and reused by every application. We assume that the
state of the cooling device does not change over the system.
A new model has to generated for every state (e.g., different
fan speeds) of the cooling device. A model that encompasses
all states of the cooling device is left as a future work.
The CPU thermal model is generated by running multiple
instances of a CPU-intensive workload that heavily uses all
functional units. We run these instances at different power
limits and record the chip temperature every second using
on-chip thermal sensors. The regression model built over the
data is

temperature = ((a * power) * log(time)) + (b * power)

where a and b are constants. The same model can be used
for other applications since the power consumed by them
captures the intensity of work done by those applications.
While tools like Hotspot [40] offer more accurate models,
they require specific details about the processor intricacies,
such as the material composition of the heat sink, that make
it hard for end-user systems to deploy.

We built a GPU thermal model using similar techniques
by running a GPU-intensive workload at different power
limits. When multiple workloads run on various compute
units (e.g., both CPU and GPU workloads) simultaneously,
we observed that the chip temperature is dominated by the
highest temperature of the two compute units when the same
workloads were run individually. So, we use the maximum
of the two model predictions as the chip temperature. Similar
to the interfaces for power model, we designed a set of
interfaces to be supported by any thermal model integrating
with Firestorm, shown in Table 1.
Throttling. The thermal monitor service minimizes thermal
interference by reducing performance of low priority appli-
cations. The monitor service identifies the class of applica-

tions to be throttled based on the trip temperature that is
exceeded currently. The monitor informs the power center
about the applications class to be throttled. The power cen-
ter throttles an application by reducing the number of tickets
given to an application (agent actually requests for tickets
on behalf of the application), and the agent decides the op-
timal how to use those tickets for maximum performance.
The extent of reduction is dependent on how long the chip
temperature has been above the trip temperature.

4.3 Execution Objects
Execution objects supports sequential applications by creat-
ing thermal headroom for them to compensate for their in-
creased power density. Our design leverages the Linux CFS
scheduler [1], which records the virtual runtime for each
thread and runs the thread with the lowest runtime next.

An execution object is formed from multiple CPUs where
one of them is the active CPU that runs the sequential pro-
gram and the others are used as heat sinks. In order to rep-
resent execution object as an execution context on all the
CPUs, virtual threads are created to represent the execution
object on all constituent CPUs. Only if all virtual threads
manage to occupy the head position in the corresponding
run queue, indicating they are next to run, can the activation
of the execution object be carried out.

After every execution, the execution runtime, or virtual
time spent executing, of the real program thread (on the
active CPU) along with the runtime of the virtual threads
are updated. If the runtime is not updated, then the virtual
threads always gets to stay at the head of the queue. Con-
versely, if the runtime is updated by a huge value, it will
rarely reach the head of the queue. We implement turbo tax
as a multiplier of the actual runtime for virtual threads: the
runtime is updated as program runtime * turbo tax where
program runtime is the time an application ran before get-
ting context switched out. If the tax value is less than 1, then

9



Name Description
Truecrack [35] Password cracker, single threaded
Histogram [30] Finding the frequency of dictionary words in a

list of files, OpenCL
x264 [17] Video Encoder, parallel program
Pbzip [23] File compression, parallel program
Spec 2006 [10] Single threaded workload suite

Table 2. Workloads

sequential applications are charged less than the actual time
used, which grants them priority ahead of regular threads
from other programs. Hence, they get to use neighboring
cores as heat sinks more. A tax value greater than 1 does
the opposite and favors using cores to run regular threads.

5. Evaluation
We address the following questions in our evaluation: (a)
How efficient and flexible is the power distribution infras-
tructure in Firestorm? (b) Can Firestorm achieve thermal
isolation among applications? (c) What is the overhead and
accuracy of individual components?

5.1 Experimental Methods.
Platform. We use a Desktop class Intel Ivy Bridge processor
i7-6700K with four cores and overclocking enabled. The
TDP (Thermal Design Power) for this processor model set
by Intel is 91W. It should be noted that the processor does
not support per-core DVFS. We use overclocking to show
how Firestorm can provide higher sequential performance
without being limited by the Intel Turbo Boost mechanism.
The native maximum frequency of the CPU is 4 GHz and
4.2 GHZ with Turbo Boost. The GPU has a maximum speed
of 1.15 GHz. Overclocking extends the CPU to 4.5 GHz and
the GPU to 1.5 GHz. The processor has a single socket and
thus runs with a single power center.

We used the RAPL counters for power measurements, on-
chip thermal sensors for temperature measurement, Intel’s
power governor tool [18] for enforcing different power lim-
its on the processor, the Linux thermal daemon service [34]
to stay below the critical temperature for the native Linux
system. The critical temperature are set to 75◦C for the na-
tive system. We set the trip temperature values in Firestorm
to 70 and 75 for background and best-effort classes respec-
tively, although the trip temperature can be changed dynam-
ically by the thermal conserve policy. We also used the duty
cycle mechanism to vary the power of individual cores. We
report the average of five runs and variation was below 2%
unless stated explicitly.
Workloads. We use the workloads listed in Table 2 for our
experiments. The GPU workload are written in OpenCL and
built using the Beignet runtime [5] that supports OpenCL
interfaces for Intel on-chip GPUs. We measure performance
for workloads as throughput: (a) Truecrack: words processed
per second (b) x264: frames processed per second (c) Pbzip:
data compressed per second (d) Histogram: files processed
per second.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stand
Alone

RAPL BE TC-RT PZ-RT

S
p
ee
d
u
p
re
la
ti
ve

to
st
an

d
-a
lo
n
e

Pbzip(PZ) Truecrack(TC)

Figure 3. Ticket distribution for applications in soft real time
class.

Balancer Truecrack Pbzip
Frequency (Desired) (Desired)

TC (standalone) 4.5 4.5 -
PZ (standalone) 3.83 - 3.83
RAPL 3.4 - -
BE 3.7 4.5 2.9
TC-RT 4.5 4.5 -
PZ-RT 3.7 - 4 - 3.7 - 4

Table 3. Frequency Balancer (Frequencies in GHz)

5.2 Power Management
We analyze whether Firestorm can distribute power to the
right set of applications, to ensure guaranteed performance
for applications and balance the performance of multiple
applications. We set a lower power limit of 30 W (TDP limit
is 91W) for all the experiments in this section. The lower
limit help us understand the behavior of the system when
applications contend for limited power tickets. The limit is
enforced by limiting the total number of power tickets to
3000, including tickets used for the LLC.
Sequential and Parallel Applications. This experiment
demonstrates Firestorm’s ability to balance performance
across applications based on their power shares. We ran a
single threaded Truecrack workload and a parallel Pbzip
workload at the same time for all configurations (except for
standalone) of this experiment. Every application thread runs
on its own dedicated core (pbzip was limited to 3 threads).
We consider five different configurations: (a) Standalone:
Applications run standalone in the system within the power
limit. (b) RAPL: Both applications run in native Linux with
power limit enforced through the RAPL counter. (c) BE:
Both applications are assigned to the best-effort application
class with equal shares. (d) TC RT: Truecrack is assigned to
soft real-time class configured with fixed power tickets (e)
PZ RT: Pbzip assigned to the soft real-time class configured
with fixed tickets.

The results are shown in the Figure 3 where the perfor-
mance of applications is normalized to the standalone case.

10



The RAPL and BE configurations are comparable since both
represent the native configurations of Linux and Firestorm
respectively. Under RAPL all cores run at same frequency,
so the parallel program achieves higher performance since
it uses multiple cores. The sequential program is also made
to run at the same frequency (rather than a higher frequency)
even though it uses fewer resources (a single core) and there-
fore performs worse than standalone. Firestorm balances
this heterogeneous demand across applications by aggregat-
ing individual applications’ desired frequency demand. The
desired frequency (the standalone frequency given the ap-
plication’s power tickets) and the balancer frequency that
Firestorm arrives at are shown in the Table 3. Since both
applications receive equal shares under BE, Truecrack in
BE performs better than Truecrack in RAPL since it gets
to use its power to increase the frequency. On the other
hand, RAPL always favors parallel programs by choosing
the highest optimal frequency for all cores.

Firestorm provides a RT (soft real time) class for ap-
plications demanding guaranteed performance. The appli-
cations in RT class receive a guaranteed number of power
tickets. We ran separate experiments placing each applica-
tion in separately the RT class for the last two configura-
tions TC RT and PZ RT, while the remaining application
placed as best-effort. Truecrack was reserved 1400 power
tickets and Pbzip with 2400 power tickets. These are the
number of power tickets required to achieve performance
similar to standalone. The remaining power tickets are used
by Firestorm for LLC and the other application. While we
determined these shares through manual experimentation,
systems that monitor application performance like Heart-
beats [11] could be used to set the shares automatically.

In these two configurations, the RT applications achieve
within 4% of native performance while companion applica-
tion suffers. The small performance drop is due to error in
power model and fluctuations in the application’s character-
istics (IPC, FPC) where the reserved tickets is not sufficient
to run at full performance. For PZ RT, the processor run at
3.7 GHz as chosen by the RT application pbzip. The power
tickets available for Truecrack were only sufficient to run at
or below 25% duty cycle and hence it performs poorly.
CPU-GPU Applications. This experiment demonstrate how
Firestorm distributes power based on application shares
across CPUs and GPU, and also its ability to redistribute
unused tickets. We ran Histogram, a GPU application and
Pbzip, a CPU application at the same time for all configu-
rations (except for standalone). Both applications belong to
best effort class and so the power distribution is dictated by
the proportional share policy. We consider five different con-
figurations: (a) Standalone: Applications are run standalone
in the system with the power limit. (b) RAPL: Native Linux
with power limit enforced through RAPL counter and the
default power ratio setting favors the GPU plane over the
CPU power plane. (c) 1:1-Shares: Both applications receive

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Stand
Alone

RAPL 1:1
Shares

2:1
Shares

1:2
Shares

S
p
ee
d
u
p
re
la
ti
ve

to
S
ta
n
d
A
lo
n
e

CPU-Pbzip GPU-Histogram

Figure 4. Power ticket distribution in best effort class.

Pbzip (CPU) Histogram (GPU) Input Final
Tickets Tickets Ratio Ratio
1736 869 2 1.997
1317 1317 1 1
1061 1579 0.5 0.671

Table 4. Ticket Distribution (Ratio - CPU:GPU)

equal shares. (d) 2:1-Shares: Pbzip receives twice the shares
of Histogram. (e) 1:2-Shares: Complement of the previous
configuration.

The results are shown in the Figure 4 where the per-
formance of applications are normalized to the standalone
case. As with the previous set of experiments, The RAPL
and 1:1-Shares configurations are comparable. The default
power ratio across power planes in Linux (RAPL) favors the
GPU more than the CPU, and as a results Pbzip performance
drops 29% while Histogram drops only 2%. In contrast,
Firestorm explicitly allocates equal shares to both applica-
tions, which better balances their performance. As shown in
the 1:1-Shares, Pbzip drops only 27% and Histogram drops
10%.

The performance of applications can be improved by
assigning more shares with respect to other applications in
the system. This is shown in the last two configurations
1:2-Shares and 2:1-Shares. The ticket distribution as per
the policy is shown in table 4 in the column Input ratio,
and the Output ratio shows the actual ratio used. The total
number of tickets is below the 3000 available since some
tickets are spent on the LLC. For 2:1-Shares and 1:1-Shares,
the ticket ratio follows the input. However, in the case of
1:2-Shares, Pbzip receives more tickets since unused tickets
from Histogram are reassigned by the power center.

5.3 Thermal Isolation
We evaluate Firestorm’s ability to avoid thermal interference
among applications to guarantee performance for applica-
tions by preserving thermal capacity.
Avoiding Thermal Interference. Current systems do not
offer thermal isolation in a shared environment. This exper-
iment shows the ability of Firestorm to isolate applications

11



40

45

50

55

60

65

70

75

80

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ch
ip
	te
m
pe

ra
tu
re
	in
	ce

lsi
us

Ap
pl
ic
at
io
n	
sp
ee
du

p	
re
la
tiv

e	
to
	st
an
d-
al
on

e

Time	in	seconds

RT	class	(x264	+	Histogram)	 Background	(Truecrack)
Temperature

Figure 5. Thermal Conservation: Temperature is plotted with
right-side y-axis and speedup follows the left-side y-axis.

from any thermal interference. We ran the same experiment
as shown in Figure 1 where two instances of Truecrack are
run at the same time. One instance is background class and
the other is best-effort class. The system was provisioned
with sufficient power tickets to run both applications at full
performance. However, they cannot be run at full perfor-
mance without exceeding the critical temperature (75◦C).

As shown in figure 1, native linux throttle all applica-
tions uniformly: the Linux thermal daemon safeguards the
processor from exceeding the critical temperature by reduc-
ing temperature for all applications. This results in the per-
formance of both best-effort and background applications
dropped by up to 19%. When we perform the same exper-
iment on Firestorm (not shown in the figure), it selectively
reduces the performance of background application up to
39% by lowering its duty cycle, while the foreground appli-
cation is continues to run at full performance (overclocked
frequency of 4.5 GHz). The thermal monitor in Firestorm
contacts the power center to reduce the power tickets given
to background application thus reducing its performance.
Ensuring thermal capacity. This experiment shows the
ability of Firestorm to reserve thermal capacity for RT class
applications. Histogram and x264 belong to the soft real time
class demanding an SLA of 2 files/sec and 5 frames/sec re-
spectively, and Truecrack is run as a background application.
We interleave RT applications and background application
such that each run for 5 seconds. Both RT applications His-
togram and x264 run for 5 seconds followed by Truecrack
running for the next 5 seconds. We ran 50 such iterations
for each configuration and compare the performance of the
RT class applications with and without the thermal conserve
policy. Sufficient power credits are available in the system
to run applications at maximum performance (overclocked
frequency of 4.5 GHz).

Figure 5 captures a snapshot of the system for two iter-
ations when the experiment was run using the thermal con-
serve policy. In native Linux with RAPL, both RT class ap-
plications failed to meet their SLAs for more than 50% of the
iterations. This occurs because the thermal capacity was ex-
hausted by background application during its 5 second run.

The processor is hot when the RT application runs, and as a
result gets throttled to a lower speed.

In contrast, with Firestorm’s thermal conserve policy, the
RT applications run achieve their SLA by running with stan-
dalone performance. This is possible since the chip does not
overheated while background application runs. Firestorm
chooses a throttle limit for the background application based
on the thermal requirements of Histogram and x264. The
thermal conserve policy sets a trip temperature of 68◦C for
the background application and does not allow the back-
ground application to exceed that temperature. As a result,
the performance of background dropped by 18% in order to
satisfy the SLA guarantees of the RT applications.

5.4 Support for Power Density
In addition to distributing power across applications,
Firestorm also allows applications to decide how to use
power most effectively. Parallel applications spread power
across more cores, while sequential applications use power
to run a single core as fast as possible, leading to high power
density. This can result in causing a thermal hotspot unless
sufficient thermal capacity available.

This experiment demonstrates the ability of Firestorm to
create thermal headroom for applications. We disabled over-
clocking support in processor for this experiment and use
native Turbo Boost. We want to demonstrate that by creating
thermal headroom through execution objects, the processor
can use Turbo Boost to execute sequential code at a higher
frequency. We use Truecrack as the sequential application
and Pbzip as the parallel application on three cores. The
maximum frequency is 4 GHz and the turbo frequency is
4.2 GHz. We ensure sufficient power tickets are available to
run at full performance (all cores at 4 GHz).

The different configurations are: (a) Standalone: Appli-
cations are run standalone in the system. (b) Native: Na-
tive Linux with both applications running simultaneously.
(c) Tax*: The variants of the configuration are achieved by
configuring the turbo tax knob to different input values. It
should be noted that lower values prefer sequential over the
parallel applications.

The results are shown in the Figure 6 where the perfor-
mance of applications are normalized to the standalone case.
The maximum speedup achievable by the parallel applica-
tion is 1 because turbo boost will not be activated when mul-
tiple cores are active. The native case does not show any per-
formance improvement for the sequential application since
all cores are active. Tax value of zero would always prioritize
the sequential application over others and this would result
in sequential application to get same as standalone perfor-
mance but the parallel performance will be zero. The var-
ious Tax* configurations — 50, 100, 150, 200 — prioritize
sequential applications over parallel applications by 2:1, 1:1,
1:1.5, 1:2. The maximum speedup achieved by the sequen-
tial application is 5.78% over native. The turbo tax balances
the 5.78% of extra sequential performance against 100% of

12



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Stand
Alone

Native Tax
50

Tax
100

Tax
150

Tax
200

S
p
ee
d
u
p
re
la
ti
ve

to
N
at
iv
e

Sequential-Truecrack
Parallel-Pbzip

Figure 6. Provisioning for Thermal Headroom.

parallel performance. The various tax values represent the
trade-off of opportunity provided by Firestorm: with a high
tax rate, the system favors parallel programs as it is hard
for Truecrack to activate an execution object, so it executes
on a single core. With very low tax rates, the system favors
running Truecrack at a higher frequency, which greatly di-
minishes Pbzip performance. Overall, these results demon-
strate how the em turbo tax configuration setting allows an
administrator to balance high sequential against high parallel
performance.

5.5 Overhead and Accuracy
We measured the overhead of Firestorm’s mechanisms and
the accuracy of our performance and thermal models.
Overheads. The primary overhead in Firestorm comes from
gathering power tickets from the power center during task
dispatch. The overhead comes to 0.75µs for both the CPU
and the GPU agents while collecting tickets and 0.4µs while
giving it back. It should be noted that the context switch time
without the power center is 2µs. Since the CPU agent hooks
into the scheduler, the overhead from CPU agent adds upto
the context switching time.
Power model accuracy. We measured the power model
accuracy by comparing its predicted power consumption
for a task against the actual power derived from the RAPL
performance counters. We found that the error was close to
16%, largely due to our simplistic model using only IPC and
FPC to predict the power consumption.
Thermal model accuracy. We measured the thermal model
accuracy by comparing the (temperature) predictions of the
model against the actual chip temperature (as measured us-
ing on-chip thermal sensors). We ran real workloads under
different power limits and comparing the temperatures at dif-
ferent times. The model prediction had an error rate close to
12%.
Model interfaces latency. Bulk of the work to generate the
model is done during the system startup time. The interac-
tion of the agent with the model during the system runtime

through its interfaces does not cost much. The latency of ev-
ery interface call is around 0.05µs.

6. Related Work
Thermal Management. There has been great deal of re-
search in this area. Works [4, 6] have compared and analyzed
the performance and power aspects of different throttling
techniques for thermal management. Currently Firestorm
only makes use of duty cycle-based throttling but it can
incorporate new throttling mechanisms from these works.
Many works [8, 19, 20, 37] have focused on minimizing the
system (or chip) temperature through scheduling techniques.
A common technique is to migrate computation to a cold re-
source when the current resource heats up. We think these
works are complementary to Firestorm where the schedul-
ing based techniques can be employed using Firestorm’s
features. There are also works [9] to prevent thermal inter-
ference among applications. Firestorm’s focus has been to
proactively prevent such interference by reserving thermal
capacity.
Power Performance Efficiency. Previous works [14, 22,
31] have focused on finding the right processor configu-
ration for a particular application or a mix of applications
to achieve the best performance at minimal energy. They
also target adapting applications to provide the same per-
formance but reducing the power consumption resulting in
high energy efficiency. Firestorm focuses only on mecha-
nisms and policies to distribute power whereas these works
focus on optimal setting power setting for a given applica-
tion.
Power Management. Several systems such as Cinder[28],
ECOSystem[39], and Power Containers[29], have been built
with a focus on energy management. Firestorm focuses
on the similar goal of promoting power as a primary re-
source and controlling the power use of every application.
Firestorm’s power ticket abstraction is inspired from these
systems. Since the focus of these works is energy, they allow
long-running applications to accumulate energy over time,
while Firestorm instead grants the ability to execute with a
particular power draw at a moment in time.

7. Conclusion
Firestorm allows fine-grained allocation of power to appli-
cations. This enables Firestorm to enforce power and ther-
mal limits and to dynamically shift power and thermal ca-
pacity between applications and processing units for better
efficiency.

As future work, we plan to explore how applications can
adapt their workload, such as fidelity of results, in response
to varying resource availability and how Firestorm can better
support application-level SLAs and achieve overall system
efficiency. Also, we would like Firestorm to handle hetero-

13



geneous cooling environment where the cooling capacity of
the system can change dynamically.

References
[1] CFS Scheduler. https://www.kernel.org/doc/

Documentation/scheduler/sched-design-CFS.txt.

[2] AMD Corporation. Amd turbo core technology.
http://www.amd.com/en-us/innovations/software-

technologies/turbo-core.

[3] Andrei Frumusanu. Early Exynos 8890 Impressions And
Full Specifications. http://www.anandtech.com/show/

10075/early-exynos-8890-impressions.

[4] P. Bailis, V. J. Reddi, S. Gandhi, D. Brooks, and M. Seltzer.
Dimetrodon: Processor-level Preventive Thermal Manage-
ment via Idle Cycle Injection. In Proceedings of the 48th De-
sign Automation Conference, DAC ’11, pages 89–94, 2011.
ACM.

[5] BEIGNET. https://01.org/beignet.

[6] J. Donald and M. Martonosi. Techniques for multicore ther-
mal management: Classification and new exploration. In
Proceedings of the 33rd Annual International Symposium on
Computer Architecture, ISCA ’06, pages 78–88, 2006. IEEE
Computer Society.

[7] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,
and D. Burger. Dark Silicon and the End of Multicore Scaling.
In Proc. ISCA, June 2011.

[8] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-
and-run: Leveraging smt and cmp to manage power density
through the operating system. In Proceedings of the 11th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XI,
pages 260–270, 2004.

[9] J. Hasan, A. Jalote, T. N. Vijaykumar, and C. E. Brodley. Heat
stroke: power-density-based denial of service in smt. In High-
Performance Computer Architecture, 2005. HPCA-11. 11th
International Symposium on, pages 166–177, Feb 2005.

[10] J. L. Henning. Spec cpu2006 benchmark descriptions. Com-
puter Architecture News, 34(4):1–17, 2006.

[11] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for respon-
sive power-aware computing. In Proceedings of the Sixteenth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI,
pages 199–212, 2011. ACM.

[12] Intel Corp. Intel turbo boost technology 2.0.
http://www.intel.com/content/www/us/en/

architecture-and-technology/turbo-boost/turbo-

boost-technology.html.

[13] Intel Corp. Thermal protection and monitoring features:
A software perspective. http://www.intel.com/cd/ids/
developer/asmo-na/eng/downloads/54118.htm, 2005.

[14] J. Li and J. F. Martinez. Dynamic power-performance adapta-
tion of parallel computation on chip multiprocessors. In High-

Performance Computer Architecture, 2006. The Twelfth Inter-
national Symposium on, pages 77–87, Feb 2006.

[15] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving resource efficiency at
scale. In Proceedings of the 42Nd Annual International Sym-
posium on Computer Architecture, ISCA ’15, pages 450–462,
2015.

[16] D. Lo and C. Kozyrakis. Dynamic management of turbomode
in modern multi-core chips. In Proceedings of the 20th Inter-
national Symposium on High Performance Computer Archi-
tecture ”’(HPCA)”’, 2014.

[17] Marth, Erich and Marcus, Guillermo. Parallelization of
the x264 encoder using OpenCL. http://li5.ziti.uni-

heidelberg.de/x264gpu/.

[18] Martin Dimitrov. Intel Power Governor. https:

//software.intel.com/en-us/articles/intel-

power-governor.

[19] A. Merkel and F. Bellosa. Task activity vectors: A new metric
for temperature-aware scheduling. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008, Eurosys ’08, pages 1–12, 2008. ACM.

[20] J. Moore, J. Chase, P. Ranganathan, and R. Sharma. Making
scheduling ”cool”: Temperature-aware workload placement in
data centers. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC ’05, pages 5–
5, 2005. USENIX Association.

[21] S. Panneerselvam and M. M. Swift. Chameleon: operating
system support for dynamic processors. In Proceedings of the
seventeenth international conference on Architectural Support
for Programming Languages and Operating Systems, ASP-
LOS ’12, pages 99–110, 2012.

[22] I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalaman-
chili. Cooperative boosting: Needy versus greedy power man-
agement. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, 2013.

[23] Parallel Implementation of bzip2 . http://compression.

ca/pbzip2/.

[24] Intel Powerclamp Driver. https://www.kernel.org/doc/
Documentation/thermal/intel_powerclamp.txt.

[25] Power Capping Framework. https://www.kernel.org/

doc/Documentation/power/powercap/powercap.txt.

[26] A. Raghavan, Y. Luo, A. Chandawalla, M. Papaefthymiou,
K. P. Pipe, T. F. Wenisch, and M. M. K. Martin. Computa-
tional sprinting. In Proc. 18th HPCA, pages 1–12, 2012. IEEE
Computer Society.

[27] Intel 64 and IA-32 architectures software developer’s
manual. http://www.intel.com/content/dam/

www/public/us/en/documents/manuals/64-ia-32-

architectures-software-developer-vol-3b-part-

2-manual.pdf, December 2015.

[28] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières,
and N. Zeldovich. Energy management in mobile devices with
the cinder operating system. In Proc. EuroSys, 2011.

[29] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen.
Power containers: an os facility for fine-grained power and

14



energy management on multicore servers. In Proc. 18th ASP-
LOS, pages 65–76, 2013.

[30] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. Gpufs:
integrating a file system with gpus. In Proc. 18th ASPLOS,
pages 485–498, 2013.

[31] T. Somu Muthukaruppan, A. Pathania, and T. Mitra. Price
theory based power management for heterogeneous multi-
cores. In Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 161–176, 2014.

[32] SpeedFan. https://en.wikipedia.org/wiki/SpeedFan.

[33] Surface Book. https://www.microsoft.com/surface/

en-us/devices/surface-book.

[34] Linux Thermal Daemon. https://01.org/linux-

thermal-daemon.

[35] Truecrack. https://code.google.com/p/truecrack/.

[36] C. A. Waldspurger and W. E. Weihl. An object-oriented
framework for modular resource management. In Proceedings
of the 5th International Workshop on Object Orientation in
Operating Systems (IWOOOS ’96), IWOOOS ’96, 1996.

[37] A. Weissel and F. Bellosa. Dynamic thermal management
for distributed systems. In IN PROCEEDINGS OF THE
FIRST WORKSHOP ON TEMPERATURE-AWARE COM-
PUTER SYSTEMS (TACS04), 2004.

[38] Wikipedia. Heat capacity. https://en.wikipedia.org/

wiki/Heat_capacity.

[39] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. Ecosystem:
Managing energy as a first class operating system resource. In
Proc. 10th ASPLOS, 2002.

[40] R. Zhang, M. R. Stan, and K. Skadron. Hotspot 6.0: Valida-
tion, acceleration and extension. Technical Report CS-2015-
04, University of Virginia, April 2015.

15


