
Scalable Parallel Flash Firmware for Many-core Architectures

Jie Zhang1, Miryeong Kwon1, Michael Swift2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, University of Wisconsin at Madison2

http://camelab.org

Abstract
NVMe is designed to unshackle flash from a traditional stor-
age bus by allowing hosts to employ many threads to achieve
higher bandwidth. While NVMe enables users to fully exploit
all levels of parallelism offered by modern SSDs, current
firmware designs are not scalable and have difficulty in han-
dling a large number of I/O requests in parallel due to its
limited computation power and many hardware contentions.

We propose DeepFlash, a novel manycore-based storage
platform that can process more than a million I/O requests
in a second (1MIOPS) while hiding long latencies imposed
by its internal flash media. Inspired by a parallel data analy-
sis system, we design the firmware based on many-to-many
threading model that can be scaled horizontally. The proposed
DeepFlash can extract the maximum performance of the un-
derlying flash memory complex by concurrently executing
multiple firmware components across many cores within the
device. To show its extreme parallel scalability, we implement
DeepFlash on a many-core prototype processor that employs
dozens of lightweight cores, analyze new challenges from par-
allel I/O processing and address the challenges by applying
concurrency-aware optimizations. Our comprehensive evalua-
tion reveals that DeepFlash can serve around 4.5 GB/s, while
minimizing the CPU demand on microbenchmarks and real
server workloads.

1 Introduction

Solid State Disks (SSDs) are extensively used as caches,
databases, and boot drives in diverse computing domains
[37, 42, 47, 60, 74]. The organizations of modern SSDs and
flash packages therein have undergone significant technology
shifts [11, 32, 39, 56, 72]. In the meantime, new storage in-
terfaces have been proposed to reduce overheads of the host
storage stack thereby improving the storage-level bandwidth.
Specifically, NVM Express (NVMe) is designed to unshackle
flash from a traditional storage interface and enable users
to take full advantages of all levels of SSD internal paral-
lelism [13, 14, 54, 71]. For example, it provides streamlined
commands and up to 64K deep queues, each with up to 64K
entries. There is massive parallelism in the backend where

requests are sent to tens or hundreds of flash packages. This
enables assigning queues to different applications; multiple
deep NVMe queues allow the host to employ many threads
thereby maximizing the storage utilization.

An SSD should handle many concurrent requests with its
massive internal parallelism [12, 31, 33, 34, 61]. However, it
is difficult for a single storage device to manage the tremen-
dous number of I/O requests arriving in parallel over many
NVMe queues. Since highly parallel I/O services require si-
multaneously performing many SSD internal tasks, such as
address translation, multi-queue processing, and flash schedul-
ing, the SSD needs multiple cores and parallel implementation
for a higher throughput. In addition, as the tasks inside the
SSD increase, the SSD must address several scalability chal-
lenges brought by garbage collection, memory/storage con-
tention and data consistency management when processing
I/O requests in parallel. These new challenges can introduce
high computation loads, making it hard to satisfy the perfor-
mance demands of diverse data-centric systems. Thus, the
high-performance SSDs require not only a powerful CPU and
controller but also an efficient flash firmware.

We propose DeepFlash, a manycore-based NVMe SSD
platform that can process more than one million I/O requests
within a second (1MIOPS) while minimizing the require-
ments of internal resources. To this end, we design a new
flash firmware model, which can extract the maximum per-
formance of hundreds of flash packages by concurrently exe-
cuting firmware components atop a manycore processor. The
layered flash firmware in many SSD technologies handles
the internal datapath from PCIe to physical flash interfaces
as a single heavy task [66, 76]. In contrast, DeepFlash em-
ploys a many-to-many threading model, which multiplexes
any number of threads onto any number of cores in firmware.

Specifically, we analyze key functions of the layered flash
firmware and decompose them into multiple modules, each is
scaled independently to run across many cores. Based on the
analysis, this work classifies the modules into a queue-gather
stage, a trans-apply stage, and a flash-scatter stage, inspired
by a parallel data analysis system [67]. Multiple threads on
the queue-gather stage handle NVMe queues, while each
thread on the flash-scatter stage handles many flash devices
on a channel bus. The address translation between logical

block addresses and physical page numbers is simultane-
ously performed by many threads at the trans-apply stage.
As each stage can have different numbers of threads, con-
tention between the threads for shared hardware resources
and structures, such as mapping table, metadata and mem-
ory management structures can arise. Integrating many cores
in the scalable flash firmware design also introduces data
consistency, coherence and hazard issues. We analyze new
challenges arising from concurrency, and address them by
applying concurrency-aware optimization techniques to each
stage, such as parallel queue processing, cache bypassing and
background work for time-consuming SSD internal tasks.

We evaluate a real system with our hardware platform that
implements DeepFlash and internally emulates low-level
flash media in a timing accurate manner. Our evaluation re-
sults show that DeepFlash successfully provides more than
1MIOPS with a dozen of simple low-power cores for all reads
and writes with sequential and random access patterns. In
addition, DeepFlash reaches 4.5 GB/s (above 1MIOPS), on
average, under the execution of diverse real server workloads.
The main contributions of this work are summarized as below:
•Many-to-many threading firmware. We identify scalabil-
ity and parallelism opportunities for high-performance flash
firmware. Our many-to-many threading model allows future
manycore-based SSDs to dynamically shift their computing
power based on different workload demands without any hard-
ware modification. DeepFlash splits all functions from the
existing layered firmware architecture into three stages, each
with one or more thread groups. Different thread groups can
communicate with each other over an on-chip interconnection
network within the target SSD.
• Parallel NVMe queue management. While employing
many NVMe queues allows the SSD to handle many I/O
requests through PCIe communication, it is hard to coordinate
simultaneous queue accesses from many cores. DeepFlash
dynamically allocates the cores to process NVMe queues
rather than statically assigning one core per queue. Thus, a
single queue is serviced by multiple cores, and a single core
can service multiple queues, which can deliver full bandwidth
for both balanced and unbalanced NVMe I/O workloads. We
show that this parallel NVMe queue processing exceeds the
performance of the static core-per-queue allocation by 6x, on
average, when only a few queues are in use. DeepFlash also
balances core utilization over computing resources.
• Efficient I/O processing. We increase the parallel scala-
bility of many-to-many threading model by employing non-
blocking communication mechanisms. We also apply sim-
ple but effective lock and address randomization methods,
which can distribute incoming I/O requests across multiple
address translators and flash packages. The proposed method
minimizes the number of hardware core to achieve 1MIOPS.
Putting all it together, DeepFlash improves bandwidth by
3.4× while significantly reducing CPU requirements, com-
pared to conventional firmware. Our DeepFlash requires only

����� �����

�
�
�
�
��
��
�
	
�

�
�

���	

�	�
��

����	����
���	�����	��

������������	
��

���
��������	�

����
�	��	��	�

���
��������	�

�������
���

���	
��������	�

���	
���	

���	
� !

��
	
�
�
�
�
��

����� �����

������
�����	
��

����� �����

����� �����

������
�����	
��

Figure 1: Overall architecture of an NVMe SSD.
a dozen of lightweight in-order cores to deliver 1MIOPS.

2 Background

2.1 High Performance NVMe SSDs

Baseline. Figure 1 shows an overview of a high-performance
SSD architecture that Marvell recently published [43]. The
host connects to the underlying SSD through four Gen 3.0
PCIe lanes (4 GB/s) and a PCIe controller. The SSD archi-
tecture employs three embedded processors, each employing
two cores [27], which are connected to an internal DRAM
controller via a processor interconnect. The SSD employs
several special-purpose processing elements, including a low-
density parity-check (LDPC) sequencer, data transfer (DMA)
engine, and scratch-pad memory for metadata management.
All these multi-core processors, controllers, and components
are connected to a flash complex that connects to eight chan-
nels, each connecting to eight packages, via flash physical
layer (PHY). We select this multicore architecture description
as our reference and extend it, since it is only documented
NVMe storage architecture that employs multiple cores at this
juncture, but other commercially available SSDs also employ
a similar multi-core firmware controller [38, 50, 59].
Future architecture. The performance offered by these de-
vices is by far below 1MIOPS. For higher bandwidth, a future
device can extend storage and processor complexes with more
flash packages and cores, respectively, which are highlighted
by red in the figure. The bandwidth of each flash package
is in practice tens of MB/s, and thus, it requires employing
more flashes/channels, thereby increasing I/O parallelism.
This flash-side extension raises several architectural issues.
First, the firmware will make frequent SSD-internal memory
accesses that stress the processor complex. Even though the
PCIe core, channel and other memory control logic may be
implemented, metadata information increases for the exten-
sion, and its access frequency gets higher to achieve 1MIOPS.
In addition, DRAM accesses for I/O buffering can be a crit-
ical bottleneck to hide flash’s long latency. Simply making
cores faster may not be sufficient because the processors will
suffer from frequent stalls due to less locality and contention
at memory. This, in turn, makes each core bandwidth lower,
which should be addressed with higher parallelism on com-
putation parts. We will explain the current architecture and
show why it is non-scalable in Section 3.

�����������	�
�
���

�
�

�
�

���������
���������

�������	

����
��

���

���

���

����

����
��

���	�
���

�����
���

������

�������
���	����

���
���
���	����

����
!�

"���	���
#���		�
�

������

�$�!���� �

�������

����

��

$��%����	����

�
	�
��
��

��
�

��
��
�
�

&
	�
��
�

��
�
�
�
�
'

$��%����	����

(

)

*

+ ,

-

.
�

�
/
!
�
��
�
�
�
�
�
��
�
��
�
�

0

#���	��������	�
�
���

��%����
�������
���

� �������
1��� ��
���

#���	1����

	������

(2

3
����
��

	������	��

�
/
!
�
��
�
�

(a) NVMe SSD datapath.

����������	
������

����
�������	
������

�	�������	������

������������������

����������
�����
	�		�

���������
��������� ����

!
���
"
�������	�

������"
������	��
����������

	
�
!��

	
�
!��

	
�
!��

�����

�����

�����

�����

�����

�����

����

�����	
���
��

���

(b) Flash firmware.
Figure 2: Datapath from PCIe to Flash and overview of flash firmware.

Datapath from PCIe to flash. To understand the source of
scalability problems, it requires being aware of the internal
datapath of NVMe SSDs and details of the datapath manage-
ment. Figure 2a illustrates the internal datapath between PCIe
and NV-DDR [7, 53], which is managed by NVMe [16] and
ONFi [69] protocols, respectively. NVMe employs multiple
device-side doorbell registers, which are designed to mini-
mize handshaking overheads. Thus, to issue an I/O request, ap-
plications submit an NVMe command to a submission queue
(SQ) (¶) and notify the SSD of the request arrival by writing
to the doorbell corresponding to the queue (·). After fetching
a host request from the queue (¸), flash firmware, known
as flash translation layer (FTL), parses the I/O operation,
metadata, and data location of the target command (¹). The
FTL then translates the physical page address (PPA) from
the host’s logical block address (LBA) (º). In the meantime,
the FTL also orchestrates data transfers. Once the address
translation is completed, the FTL moves the data, based on
the I/O timing constraints defined by ONFi (»). A comple-
tion queue (CQ) is always paired with an SQ in the NVMe
protocol, and the FTL writes a result to the CQ and updates
the tail doorbell corresponding to the host request. The FTL
notifies the queue completion to the host (¼) by generating
a message-signaled interrupt (MSI) (½). The host can finish
the I/O process (¾) and acknowledge the MSI by writing the
head doorbell associated with the original request (¿).

2.2 Software Support

Flash firmware. Figure 2b shows the processes of the FTL,
which performs the steps ¸ ∼ ½. The FTL manages NVMe
queues/requests and responds to the host requests by pro-
cessing the corresponding doorbell. The FTL then performs
address translations and manages memory transactions for
the flash media. While prior studies [34, 48, 49] distinguish
host command controls and flash transaction management as
the host interface layer (HIL) and flash interface layer (FIL),
respectively, in practice, both modules are implemented as
a layered firmware calling through functions of event-based
codes with a single thread [57, 65, 70]. The performance of
the layered firmware is not on the critical path as flash latency
is several orders of magnitude longer than one I/O command

processing latency. However, SSDs require a large number
of flash packages and queues to handle more than a thousand
requests per msec. When increasing the number of underlying
flash packages, the FTL requires powerful computation not
only to spread I/O requests across flash packages but also to
process I/O commands in parallel. We observe that, compute
latency keeps increasing due to non-scalable firmware and
takes 93.6% of the total I/O processing time in worst case.
Memory spaces. While the FTL manages the logical block
space and physical flash space, it also handles SSD’s internal
memory space and accesses to host system memory space (cf.
Figure 2b). SSDs manage internal memory for caching incom-
ing I/O requests and the corresponding data. Similarly, the
FTL uses the internal memory for metadata and NVMe queue
management (e.g., SQs/CQs). In addition, the FTL requires
accessing the host system memory space to transfer actual
data contents over PCIe. Unfortunately, a layered firmware
design engages in accesses to memory without any constraint
and protection mechanism, which can make the data incon-
sistent and incoherent in simultaneous accesses. However,
computing resources with more parallelism must increase
to achieve more than 1MIOPS, and many I/O requests need
processing simultaneously. Thus, all shared memory spaces
of a manycore SSD platform require appropriate concurrency
control and resource protection, similar to virtual memory.

3 Challenges to Exceeding 1MIOPS

To understand the main challenges in scaling SSD firmware,
we extend the baseline SSD architecture in a highly scalable
environment: Intel many-integrated cores (MIC) [18]. We
select this processor platform, because its architecture uses a
simple in-order and low-frequency core model, but provides
a high core count to study parallelism and scalability. The
platform internally emulates low-level flash modules with
hardware-validated software1, so that the flash complex can
be extended by adding more emulated channels and flash re-
sources: the number of flash (quad-die package, QDP) varies
from 2 to 512. Note that MIC is a prototyping platform used

1This emulation framework is validated by comparing with Samsung Z-
SSD prototype [4], multi-stream 983 DCT (Proof of Concept), 850 Pro [15]
and Intel NVMe 750 [25]. The software will be publicly available.

2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
20.0

0.2

0.4

0.6

0.8

1.0

S
S

D
 l
a
te

n
c
y
 b

re
a
k
d
o
w

n

 D
M

A

 A
d
d
r. tra

n
s

 IO
 c

a
c
h
e

 IO

 p
a
rs

e
 IO

 fe
tc

h

 F
la

s
h

Number of flash packages

0

30

60

90

120

150

180

P
e
rf

o
rm

a
n
c
e
 (

K
 I
O

P
S

)

(a) Flash scaling.

1 2 4 8
1
6

3
2

0

1

2

3

4

5

0

20

40

60

80

Number of flash cores

M
IO

P
S

 Expected

 Naive

P
e
rf

.d
e
g
ra

d
a
ti
o
n
 (

%
)

(b) Core scaling.
Figure 3: Perf. with varying flash packages and cores.

for only exploring the limit of scalability, rather than as a
suggestion for actual SSD controller.
Flash scaling. The bandwidth of a low-level flash package
is several orders of magnitude lower than the PCIe band-
width. Thus, SSD vendors integrate many flash packages over
multiple channels, which can in parallel serve I/O requests
managed by NVMe. Figure 3a shows the relationship of band-
width and execution latency breakdown with various number
of flash packages. In this evaluation, we emulate an SSD by
creating a layered firmware instance in a single MIC core, in
which two threads are initialized to process the tasks of HIL
and FTL, respectively. We also assign 16 MIC cores (one core
per flash channel) to manage flash interface subsystems. We
evaluate the performance of the configured SSD emulation
platform by testing 4KB sequential writes. For the break-
down analysis, we decompose total latency into i) NVMe
management (I/O parse and I/O fetch), ii) I/O cache,
iii) address translation (including flash scheduling), vi)
NVMe data transfers (DMA) and v) flash operations (Flash).
One can observe from the figure that the SSD performance
saturates at 170K IOPS with 64 flash packages, connected
over 16 channels. Specifically, the flash operations are the
main contributor of the total execution time in cases where
our SSD employs tens of flash packages (73% of the total
latency). However, as the number of flash packages increases
(more than 32), the layered firmware operations on a core
become the performance bottleneck. NVMe management and
address translation account for 41% and 29% of the total time,
while flash only consumes 12% of the total cycles.

There are two reasons that flash firmware turns into the
performance bottleneck with many underlying flash devices.
First, NVMe queues can supply many I/O requests to take
advantages of the SSD internal parallelism, but a single-core
SSD controller is insufficient to fetch all the requests. Second,
it is faster to parallelize I/O accesses across many flash chips
than performing address translation only on one core. These
new challenges make it difficult to fully leverage the internal
parallelism with the conventional layered firmware model.
Core scaling. To take flash firmware off the critical path in
scalable I/O processing, one can increase computing power
with the execution of many firmware instances. This approach
can allocate a core per NVMe SQ/CQ and initiate one layered
firmware instance in each core. However, we observe that
this naive approach cannot successfully address the burdens
brought by flash firmware. To be precise, we evaluate IOPS

����� ��������� 	
�� ���� ����
��

���

����������������������� �������������

Figure 4: Many-to-many threading firmware model.
with varying number of cores, ranging from 1 to 32. Figure
3b compares the performance of aforementioned naive many-
core approach (e.g., Naive) with the system that expects per-
fect parallel scalability (e.g., Expected). Expected’s perfor-
mance is calculated by multiplying the number of cores with
IOPS of Naive built on a single core SSD. One can observe
from this figure that Naive can only achieve 813K IOPS even
with 32 cores, which exhibits 82.6% lower performance, com-
pared to Expected. This is because contention and consis-
tency management for the memory spaces of internal DRAM
(cf. Section 5.3) introduces significant synchronization over-
heads. In addition, the FTL must serialize the I/O requests to
avoid hazards while processing many queues in parallel. Since
all these issues are not considered by the layered firmware
model, it should be re-designed by considering core scaling.

The goal of our new firmware is to fully parallelize multiple
NVMe processing datapaths in a highly scalable manner while
minimizing the usage of SSD internal resources. DeepFlash
requires only 12 in-order cores to achieve 1M or more IOPS.

4 Many-to-Many Threading Firmware

Conventional FTL designs are unable to fully convert the
computing power brought by a manycore processor to storage
performance, as they put all FTL tasks into a single large block
of the software stack. In this section, we analyze the func-
tions of the traditional FTLs and decompose them into seven
different function groups: 1) NVMe queue handling (NVMQ),
2) data cache (CACHE), 3) address translation (TRANS), 4)
index lock (ILOCK), 5) logging utility (LOG), 6) background
garbage collection utility (BGC), and 7) flash command and
transaction scheduling (FCMD). We then reconstruct the key
function groups from the ground up, keeping in mind con-
currency, and deploy our reworked firmware modules across
multiple cores in a scalable manner.

4.1 Overview

Figure 4 shows our DeepFlash’s many-to-many threading
firmware model. The firmware is a set of modules (i.e.,
threads) in a request-processing network that is mapped to
a set of processors. Each thread can have a firmware opera-
tion, and the task can be scaled by instantiating into multiple
parallel threads, referred to as stages. Based on different data

���� ���

���	
 ����

���

�����

�
�
��

�����

�����

�����

�����

����� �����

����� �����

����� �����

��������
�����		
������

����������������
��������������
�������

���
�����

��

����
����	

������������

����	������

���	��	������

���������
��� ��!�

Figure 5: Firmware architecture.
processing flows and tasks, we group the stages into queue-
gather, trans-apply, and flash-scatter modules. The queue-
gather stage mainly parses NVMe requests and collects them
to the SSD-internal DRAM, whereas the trans-apply stage
mainly buffers the data and translates addresses. The flash-
scatter stage spreads the requests across many underlying
flash packages and manages background SSD-internal tasks
in parallel. This new firmware enables scalable and flexible
computing, and highly parallel I/O executions.

All threads are maximally independent, and I/O requests
are always processed from left to right in the thread network,
which reduces the hardware contentions and consistency prob-
lems, imposed by managing various memory spaces. For ex-
ample, two independent I/O requests are processed by two
different network paths (which are highlighted in Figure 4
by red and blue lines, respectively). Consequently, it can si-
multaneously service incoming I/O requests as many network
paths on as DeepFlash can create. In contrast to the other
threads, background threads are asynchronous with the incom-
ing I/O requests or host-side services. Therefore, they create
their own network paths (dashed lines), which perform SSD
internal tasks at background. Since each stage can process
a different part of an I/O request, DeepFlash can process
multiple requests in a pipeline manner. Our firmware model
also can be simply extended by adding more threads based on
performance demands of the target system.

Figure 5 illustrates how our many-to-many threading model
can be applied to and operate in the many-core based SSD ar-
chitecture of DeepFlash. While the procedure of I/O services
is managed by many threads in the different data processing
paths, the threads can be allocated in any core in the network,
in a parallel and scalable manner.

4.2 Queue-gather Stage

NVMe queue management. For high performance, NVMe
supports up to 64K queues, each up to 64K entries. As
shown in Figure 6a, once a host initiates an NVMe com-
mand to an SQ and writes the corresponding doorbell, the
firmware fetches the command from the SQ and decodes a
non-contiguous set of host physical memory pages by refer-
ring a kernel list structure [2], called a physical region page
(PRP) [23]. Since the length of the data in a request can vary,
its data can be delivered by multiple data frames, each of
which is usually 4KB. While all command information can
be retrieved by the device-level registers and SQ, the contents

������

�
�
��
��

�
�
�
�	

� ����

�����
����
�����

	
	�
�� ���

��������������

�
�
�

�����
��������

�

���
��������

�

(a) Data contention (1:N).

��
�
��
��
�

	
��
�
��
��
�

����
�����

����
�����

�
�
��

�
�
��

������ ������

����

	
�
	
�

(b) Unbalanced task.

����

�����

�����

�����
����

�	
�
����

�	
�
����

�� ��

���	 ���

���� ����

(c) I/O hazard.
Figure 6: Challenges of NVMQ allocation (SQ:NVMQ).
of such data frames exist across non-contiguous host-side
DRAM (for a single I/O request). The firmware parses the
PRP and begins DMA for multiple data frames per request.
Once all the I/O services associated with those data frames
complete, firmware notifies the host of completion through
the target CQ. We refer to all the tasks, related to this NVMe
command and queue management, as NVMQ.

A challenge to employ many cores for parallel queue pro-
cessing is that, multiple NVMQ cores may simultaneously
fetch a same set of NVMe commands from a single queue.
This in turn accesses the host memory by referring a same
set of PRPs, which makes the behaviors of parallel queue
accesses undefined and non-deterministic (Figure 6a). To ad-
dress this challenge, one can make each core handle only a
set of SQ/CQ, and therefore, there is no contention, caused by
simultaneous queue processing or PRP accesses (Figure 6b).
In this “static” queue allocation, each NVMQ core fetches a
request from a different queue, based on the doorbell’s queue
index and brings the corresponding data from the host system
memory to SSD internal memory. However, this static ap-
proach requires that the host balance requests across queues
to maximize the resource utilization of NVMQ threads. In
addition, it is difficult to scale to a large number of queues.
DeepFlash addresses these challenges by introducing a dy-
namic I/O serialization, which allows multiple NVMQ threads
to access each SQ/CQ in parallel while avoiding a consistency
violation. Details of NVMQ will be explained in Section 5.1.
I/O mutual exclusion. Even though the NVMe specification
does not regulate the processing ordering of NVMe com-
mands in a range from where the head pointer indicates to
the entry that the tail pointer refers to [3], users may expect
that the SSD processes the requests in the order that users
submitted. However, in our DeepFlash, many threads can
simultaneously process I/O requests in any order of accesses.
It can make the order of I/O processing different with the
order NVMe queues (and users) expected, which may in turn
introduce an I/O hazard or a consistency issue. For example,
Figure 6c shows a potential problem brought by parallel I/O
processing. In this figure, there are two different I/O requests
from the same NVMe SQ, request-1 (a write) and request-2
(a read), which create two different paths, but target to the
same PPA. Since these two requests are processed by different
NVMQ threads, the request-2 can be served from the target
slightly earlier than the request-1. The request-1 then will be

�����
�����	��

����������
��������������

����
���

��	�

��	

���������

��������	
��	��

�		
���

��	�

�������
��
�����

������	�
����

���

���

(a) Main procedure of CACHE.

����������

���	 ���
 �����
��
�
�

�
�
�
	

���

���

��������

	
�	
	 	
��

����� �����

��������

����������

(b) Shards (TRANS).
Figure 7: Challenge analysis in CACHE and TRANS.

stalled, and the request-2 will be served with stale data. Dur-
ing this phase, it is also possible that any thread can invalidate
the data while transferring or buffering them out of order.

While serializing the I/O request processing with a strong
ordering can guarantee data consistency, it significantly hurts
SSD performance. One potential solution is introducing a
locking system, which provides a lock per page. However,
per-page lock operations within an SSD can be one of the
most expensive mechanisms due to various I/O lengths and
a large storage capacity of the SSD. Instead, we partition
physical flash address space into many shards, whose access
granularity is greater than a page, and assign an index-based
lock to each shard. We implement the index lock as a red-
black tree and make this locking system as a dedicated thread
(ILOCK). This tree helps ILOCK quickly identify which
lock to use, and reduces the overheads of lock acquisition
and release. Nevertheless, since NVMQ threads may access
a few ILOCK threads, it also can be resource contention.
DeepFlash optimizes ILOCK by redistributing the requests
based on lock ownership (cf., Section 5.2). Note that there is
no consistency issue if the I/O requests target different LBAs.
In addition, as most OSes manage the access control to prevent
different cores from accessing the same files [19, 41, 52], I/O
requests from different NVMe queues (mapping to different
cores) access different LBAs, which also does not introduce
the consistency issue. Therefore, DeepFlash can solve the I/O
hazard by guaranteeing the ordering of I/O requests, which
are issued to the same queue and access the same LBAs, while
DeepFlash can process other I/O requests out of order.

4.3 Trans-apply Stage

Data caching and buffering. To appropriately handle
NVMe’s parallel queues and achieve more than 1MIOPS,
it is important to utilize the internal DRAM buffer efficiently.
Specifically, even though modern SSDs enjoy the massive
internal parallelism stemming from tens or hundreds of flash
packages, the latency for each chip is orders of magnitude
longer than DRAM [22, 45, 46], which can stall NVMQ’s
I/O processing. DeepFlash, therefore, incorporates CACHE
threads that incarnate SSD internal memory as a burst buffer
by mapping LBAs to DRAM addresses rather than flash ones.
The data buffered by CACHE can be drained by striping re-
quests across many flash packages with high parallelism.

As shown in Figure 7a, each CACHE thread has its own
mapping table to record the memory locations of the buffered
requests. CACHE threads are configured with a traditional
direct-map cache to reduce the burden of table lookup or cache
replacement. In this design, as each CACHE thread has a
different memory region to manage, NVMQ simply calculates
the index of the target memory region by modulating the
request’s LBA, and forwards the incoming requests to the
target CACHE. However, since all NVMQ threads possibly
communicate with a CACHE thread for every I/O request,
it can introduce extra latency imposed by passing messages
among threads. In addition, to minimize the number of cores
that DeepFlash uses, we need to fully utilize the allocated
cores and dedicate them to each firmware operation while
minimizing the communication overhead. To this end, we
put a cache tag inquiry method in NVMQ and make CACHE
threads fully handle cache hits and evictions. With the tag
inquiry method, NVMQ can create a bypass path, which can
remove the communication overheads (cf. Section 5.3).
Parallel address translation. The FTL manages physical
blocks and is aware of flash-specific behavior such as erase-
before-write and asymmetric erase and read/write operation
unit (block vs. page). We decouple FTL address translation
from system management activities such as garbage collection
or logging (e.g., journaling) and allocate the management to
multiple threads. The threads that perform this simplified
address translation are referred to as TRANS. To translate
addresses in parallel, it needs to partition both LBA space and
PPA space and allocate them to each TRANS thread.

As shown in Figure 7b, a simple solution is to split a sin-
gle LBA space into m numbers of address chunks, where
m is the number of TRANS threads, and map the addresses
by wrapping around upon reaching m. To take advantage of
channel-level parallelism, it can also separate a single PPA
space into k shards, where k is the number of underlying
channels, and map the shards to each TRANS with arith-
metic modulo k. While this address partitioning can make
all TRANS threads operate in parallel without interference,
unbalanced I/O accesses can activate a few TRANS threads or
channels. This can introduce a poor resource utilization and
many resource conflicts and stall a request service on the fly.
Thus, we randomize the addresses when partitioning the LBA
space with simple XOR operators. This can scramble LBA
and statically assign all incoming I/O requests across different
TRANS threads in an evenly distributed manner. We also allo-
cate all the physical blocks of the PPA space to each TRANS
in a round-robin fashion. This block-interleaved virtualization
allows us to split the PPA space with finer granularity.

4.4 Flash-scatter Stage

Background task scheduling. The datapath for garbage col-
lection (GCs) can be another critical path to achieve high
bandwidth as it stalls many I/O services while reclaiming

�������

�������

��	��

	���

��
���

������

����

����

�����

����

�����

� � � � � � !

��� ��� ���	 ���	

�

�

��� ���	

�

����

Figure 8: The main procedure of FCMD cores.
flash block(s). In this work, GCs can be performed in parallel
by allocating separate core(s), referred to as BGC. BGC(s)
records the block numbers that have no more entries to write
when TRANS threads process incoming I/O requests. BGC
then merges the blocks and update the mapping table of corre-
sponding TRANS in behind I/O processing. Since a thread in
TRANS can process address translations during BGC’s block
reclaims, it would introduce a consistency issue on mapping
table updates. To avoid conflicts with TRANS threads, BGC
reclaims blocks and updates the mapping table at background
when there is no activity in NVMQ and the TRANS threads
complete translation tasks. If the system experiences a heavy
load and clean blocks are running out, our approach performs
on-demand GC. To avoid data consistency issue, we only
block the execution of the TRANS thread, which is responsi-
ble for the address translation of the reclaiming flash block.
Journalling. SSD firmware requires journalling by period-
ically dumping the local metadata of TRANS threads (e.g.,
mapping table) from DRAM to a designated flash. In ad-
dition, it needs to keep track of the changes, which are not
dumped yet. However, managing consistency and coherency
for persistent data can introduce a burden to TRANS. Our
DeepFlash separates the journalling from TRANS and as-
signs it to a LOG thread. Specifically, TRANS writes the
LPN-to-PPN mapping information of a FTL page table en-
try (PTE) to out-of-band (OoB) of the target flash page [64]
in each flash program operation (along with the per-page
data). In the meantime, LOG periodically reads all metadata
in DRAM, stores them to flash, and builds a checkpoint in the
background. For each checkpoint, LOG records a version, a
commit and a page pointer indicating the physical location of
the flash page where TRANS starts writing to. At a boot time,
LOG checks sanity by examining the commit. If the latest ver-
sion is staled, LOG loads a previous version and reconstructs
mapping information by combining the checkpointed table
and PTEs that TRANS wrote since the previous checkpoint.
Parallel flash accesses. At the end of the DeepFlash net-
work, the firmware threads need to i) compose flash transac-
tions respecting flash interface timing and ii) schedule them
across different flash resources over the flash physical layer
(PHY). These activities are managed by separate cores, re-
ferred to as FCMD. As shown in Figure 8, each thread in
FCMD parses the PPA translated by TRANS (or generated
by BGC/LOG) into the target channel, package, chip and
plane numbers. The threads then check the target resources’
availability and compose flash transactions by following the
underlying flash interface protocol. Typically, memory tim-

�
�
�
�
��
�
�	
�
�

��������� 	��
��������

����

����

������ ���	
� �

�

�

�����	��
����������

��

����������	�
������

������ ����������

���	

���	

�����	��
������

� �����	���������

� �����	���������

��

������

� ������

��������

� ������

������
������

Figure 9: Dynamic I/O serialization (DIOS).
ings within a flash transaction can be classified by pre-dma,
mem-op and post-dma. While pre-dma includes operation
command, address, and data transfer (for writes), post-dma
is composed by completion command and another data trans-
fer (for reads). Memory operations of the underlying flash
are called mem-op in this example. FCMD(s) then scatters
the composed transactions over multiple flash resources. Dur-
ing this time, all transaction activities are scheduled in an
interleaved way, so that it can maximize the utilization of
channel and flash resources. The completion order of multiple
I/O requests processed by this transaction scheduling can be
spontaneously an out-of-order.

In our design, each FCMD thread is statically mapped to
one or more channels, and the number of channels that will
be assigned to the FCMD thread is determined based on the
SSD vendor demands (and/or computing power).

5 Optimizing DeepFlash

While the baseline DeepFlash architecture distributes func-
tionality with many-to-many threading, there are scalability
issues. In this section, we will explain the details of thread
optimizations to increase parallel scalability that allows faster,
more parallel implementations.

5.1 Parallel Processing for NVMe Queue
To address the challenges of the static queue allocation ap-
proach, we introduce the dynamic I/O serialization (DIOS),
which allows a variable ratio of queues to cores. DIOS de-
couples the fetching and parsing processes of NVMe queue
entries. As shown in Figure 9, once a NVMQ thread fetches
a batch of NVMe commands from a NVMe queue, other
NVMQ threads can simultaneously parse the fetched NVMe
queue entries. This allows all NVMQ threads to participate in
processing the NVMe queue entries from the same queue or
multiple queues. Specifically, DIOS allocates a storage-side
SQ buffer (per SQ) in a shared memory space (visible to all
NVMQ threads) when the host initializes NVMe SSD. If the
host writes the tail index to the doorbell, a NVMQ thread
fetches multiple NVMe queue entries and copies them (not
actual data) to the SQ buffer. All NVMQ threads then process
the NVMe commands existing in the SQ buffer in parallel.
The batch copy is performed per 64 entries or till the tail for
SQ and CQ points a same position. Similarly, DIOS creates

a CQ buffer (per CQ) in the shared memory. NVMQ threads
update the CQ buffer instead of the actual CQ as an out of
order, and flush the NVMe completion messages from the
CQ buffer to the CQ in batch. This allows multiple threads
update an NVMe queue in parallel without a modification
of the NVMe protocol and host side storage stack. Another
technical challenge for processing a queue in parallel is that
the head and tail pointers of SQ and CQ buffers are also
shared resources, which requires a protection for simultane-
ous access. DeepFlash offers DIOS’s head (D-head) and tail
(D-tail) pointers, and allows NVMQ threads to access SQ and
CQ through those pointers, respectively. Since D-head and
D-tail pointers are managed by gcc atomic built-in function,
__sync_fetch_and_add [21], and the core allocation is per-
formed by all NVMQ threads, in parallel, the host memory
can be simultaneously accessed but at different locations.

5.2 Index Lock Optimization

When multiple NVMQ threads contend to acquire or release
the same lock due to their same target address range, it can
raise two technical issues: i) lock contention and ii) low re-
source utilization of NVMQ. As shown in Figure 10a, an
ILOCK thread sees all incoming lock requests (per page by
LBA) through its message queue. This queue sorts the mes-
sages based on SQ indices, and each message maintains thread
request structure that includes an SQ index, NVMQ ID, LBA,
and lock request information (e.g., acquire and release). Since
the order of queue’s lock requests is non-deterministic, in a
case of contention on acquisition, it must perform I/O services
by respecting the order of requests in the corresponding SQ.
Thus, the ILOCK thread infers the SQ order by referring to
the SQ index in the message queue if the target LBA with the
lock request has a conflict. It then checks the red-black (RB)
tree whose LBA-indexed node contains the lock number and
owner ID that already acquired the corresponding address.
If there is no node in the lock RB tree, the ILOCK thread
allocates a node with the request’s NVMQ ID. When ILOCK
receives a release request, it directly removes the target node
without an SQ inference process. If the target address is al-
ready held by another NVMQ thread, the lock requester can
be stalled until the corresponding I/O service is completed.
Since low-level flash latency takes hundreds of microseconds
to a few milliseconds, the stalled NVMQ can hurt overall per-
formance. In our design, ILOCK returns the owner ID for all
lock acquisition requests rather than returning simply acquisi-
tion result (e.g., false or fail). The NVMQ thread receives the
ID of the owning NVMQ thread, and can forward the request
there to be processed rather than communicating with ILOCK
again. Alternatively, the NVMQ thread can perform other
tasks, such as issuing the I/O service to TRANS or CACHE.
The insight behind this forwarding is that if another NVMQ
owns the corresponding lock of request, then forwards the re-
quest to owner and stop further communication with ILOCK.

���� ����� 	
���

�������
������ ����	����

	���
�����

� � 	

���
����
���

�����	

��

�����	

��

����

����

����

����

����

����

����

���

�������
����
�����

�
������
�����

������

������������
������

����	 ���������!������!"�#$%�&'

����	 ����������!"��������(��))��*'

������
����

�����������
�����������

�������

�����

���#����

$+�
$!�,�
�-'

�����#.

%/����
#.��������

�	
���	��

���	
������

$!�,�
#.

�������������	����
������

������

�������

��))�*�

�)*
-��

�
�
�
��
�
��
�	

�

�
�

�

	
�
��

�
�
��
��
�
�

�����

������

����

Figure 10: Optimization details.
This, in turn, can free the NVMQ thread from waiting for the
lock acquisition, which increases the parallelism of DIOS.

5.3 Non-blocking Cache

To get CACHE off the critical path, we add a direct path be-
tween NVMQ and TRANS threads and make NVMQ threads
access CACHE threads "only if" there is data in CACHE.
We allocate direct-map table(s) in a shared memory space
to accommodate the cache metadata so that NVMQ threads
can lookup the cache metadata on their own and send I/O
requests only if there is a hit. However, this simple approach
may introduce inconsistency between the cache metadata of
the direct-map table and target data of the CACHE. When a
write evicts a dirty page from the burst buffer, the metadata
of such evicted page is removed from the direct-map table
immediately. However, the target data of the evicted page
may still stay in the burst buffer, due to the long latency of
a flash write. Therefore, when a dirty page is in progress of
eviction, read requests, which target for the same page, may
access stale data from the flash. To coordinate the direct-map
table and CACHE correctly, we add “evicted LPN” field in
each map table entry that presents the page number, being in
eviction (cf. Figure 10b). In this example of the figure, we as-
sume the burst buffer is a direct mapped cache with 3 entries.
The request (Req ¶) evicts the dirty page at LPN 0x00. Thus,
NVMQ records the LPN of Req ¶ in the cached LPN field
of the direct-map table and moves the address of the evicted
page to its evicted LPN field. Later, as the LPN of Req · (the
read at 0x00) matches with the evicted LPN field, Req · is
served by CACHE instead of accessing the flash. If CACHE
is busy in evicting the dirty page at LPN 0x00, Req ¸ (the
write at 0x06) has to be stalled. To address this, we make Req
¸ directly bypass CACHE. Once the eviction successfully
completes, CACHE clears the evicted LPN field (¹).

To make this non-blocking cache more efficient, we add
a simple randomizing function to retrieve the target TRANS
index for NVMQ and CACHE threads, which can evenly
distribute their requests in a static manner. This function
performs an XOR operation per bit for all the bit groups

and generates the target TRANS index, which takes less than
20 ns. The randomization allows queue-gather stages to issue
requests to TRANS by addressing load imbalance.

6 Evaluation

Implementation platform. We set up an accurate SSD em-
ulation platform by respecting the real NVMe protocol, the
timing constraints for flash backbone and the functionality
of a flexible firmware. Specifically, we emulate a manycore-
based SSD firmware by using a MIC 5120D accelerator that
employs 60 lightweight in-order cores (4 hardware threads
per core) [28]. The MIC cores operate at 1GHz and are im-
plemented by applying low power techniques such as short
in-order pipeline. We emulate the flash backbone by mod-
elling various flash latencies, different levels of parallelism
(i.e., channel/way/flash) and the request conflicts for flash
resources. Our flash backbone consists of 16 channels, each
connecting 16 QDP flash packages [69]; we observed that
the performance of both read and write operations on the
backbone itself is not the bottleneck to achieve more than 1
MIOPS. The NVMe interface on the accelerator is also fully
emulated by wrapping Intel’s symmetric communications in-
terface (SCIF) with an NVMe emulation driver and controller
that we implemented. The host employs a Xeon 16-core pro-
cessor and 256 GB DRAM, running Linux kernel 2.6.32 [62].
It should be noted that this work uses MIC to explore the
scalability limits of the design; the resulting software can run
with fewer cores if they are more powerful, but the design
can now be about what is most economic and power efficient,
rather than whether the firmware can be scalable.
Configurations. DeepFlash is the emulated SSD platform
including all the proposed designs of this paper. Compared to
DeepFlash, BaseDeepFlash does not apply the optimization
techniques (described in Section 5). We evaluate the perfor-
mance of a real Intel customer-grade SSD (750SSD) [25]
and high-performance NVMe SSD (4600SSD) [26] for a
better comparison. We also emulate another SSD platform
(ManyLayered), which is an approach to scale up the layered
firmware on many cores. Specifically, ManyLayered statically
splits the SSD hardware resources into multiple subsets, each
containing the resources of one flash channel and running a
layered firmware independently. For each layered firmware
instance, ManyLayered assigns a pair of threads: one is used
for managing flash transaction, and another is assigned to run
HIL and FTL. All these emulation platforms use “12 cores"
by default. Lastly, we also test different flash technologies
such as SLC, MLC, TLC, each of which latency characteris-
tics are extracted from [44], [45] and [46], respectively. By
default, the MLC flash array in pristine state is used for our
evaluations. The details of SSD platform are in Table 1.
Workloads. In addition to microbenchmarks (reads and
writes with sequential and random patterns), we test diverse
server workloads, collected from Microsoft Production Server

(MPS) [35], FIU SRCMap [63], Enterprise, and FIU IOD-
edup [40]. Each workload exhibits various request sizes, rang-
ing from 4KB to tens of KB, which are listed in Table 1. Since
all the workload traces are collected from the narrow-queue
SATA hard disks, replaying the traces with the original times-
tamps cannot fully utilize the deep NVMe queues, which in
turn conceals the real performance of SSD [29]. To this end,
our trace replaying approach allocates 16 worker threads in
the host to keep issuing I/O requests, so that the NVMe queues
are not depleted by the SSD platforms.

6.1 Performance Analysis

Microbenchmarks. Figure 11 compares the throughput of
the five SSD platforms with I/O sizes varying from 4KB
to 32KB. Overall, ManyLayered outperforms 750SSD and
4600SSD by 1.5× and 45%, on average, respectively. This is
because ManyLayered can partially take the benefits of many-
core computing and parallelize I/O processing across multi-
ple queues and channels over the static resource partitioning.
BaseDeepFlash exhibits poor performance in cases that the
request size is smaller than 24KB with random patterns. This
is because threads in NVMQ/ILOCK keep tight inter-thread
communications to appropriately control the consistency over
locks. However, for large requests (32KB), BaseDeepFlash
exhibits good performance close to ManyLayered, as multiple
pages in large requests can be merged to acquire one range
lock, which reduces the communication (compared to smaller
request sizes), and thus, it achieves higher bandwidth.

We observe that ManyLayered and BaseDeepFlash have
a significant performance degradation in random reads and
random writes (cf. Figures 11b and 11d). DeepFlash, in con-
trast, provides more than 1MIOPS in all types of I/O requests;
4.8 GB/s and 4.5 GB/s bandwidth for reads and writes, respec-
tively. While those many-core approaches suffer from many
core/flash-level conflicts (ManyLayered) and lock/sync is-
sues (BaseDeepFlash) on the imbalanced random workloads,
DeepFlash scrambles the LBA space and evenly distributes
all the random I/O requests to different TRANS threads with
a low overhead. In addition, it applies cache bypass and lock
forwarding techniques to mitigate the long stalls, imposed by
lock inquiry and inter-thread communication. This can enable
more threads to serve I/O requests in parallel.

As shown in Figure 12, DeepFlash can mostly activate
6.3 cores that run 25 threads to process I/O services in paral-
lel, which is better than BaseDeepFlash by 127% and 63%
for reads and writes, respectively. Note that, for the random
writes, the bandwidth of DeepFlash is sustainable (4.2 GB/s)
by activating only 4.5 cores (18 threads). This is because al-
though many cores contend to acquire ILOCK which makes
more cores stay in idle, the burst buffer successfully over-
comes the long write latency of the flash.

Figure 12e shows the active core decomposition of
DeepFlash. As shown in the figure, reads require 23% more

Host Workloadsets Microsoft,Production Server FIU IODedup
CPU/mem Xeon 16-core processor/256GB, DDR4 Workloads 24HR 24HRS BS CFS DADS DAP DDR cheetah homes webonline

Storage platform/firmware Read Ratio 0.06 0.13 0.11 0.82 0.87 0.57 0.9 0.99 0 0
Controller Xeon-phi, 12 cores by default Avg length (KB) 7.5 12.1 26.3 8.6 27.6 63.4 12.2 4 4 4
FTL/buffer hybrid, n:m=1:8, 1 GB/512 MB Randomness 0.3 0.4937 0.87 0.94 0.99 0.38 0.313 0.12 0.14 0.14
Flash
array

16 channels/16 pkgs per channel/1k blocks per die
512GB(SLC),1TB(MLC),1.5TB(TLC)

Workloadsets FIU SRCMap Enterprise
Workloads ikki online topgun webmail casa webresearch webusers madmax Exchange

SLC R: 25us, W: 300us, E: 2ms, Max: 1.4 MIOPS Read Ratio 0 0 0 0 0 0 0 0.002 0.24
MLC R: 53us, W: 0.9ms, E: 2.3ms, Max: 1.3 MIOPS Avg length (KB) 4 4 4 4 4 4 4 4.005 9.2
TLC R: 78us, W: 2.6ms, E: 2.3ms, Max: 1.1 MIOPS Randomness 0.39 0.17 0.14 0.21 0.65 0.11 0.14 0.08 0.84

Table 1: H/W configurations and Important workload characteristics of the workloads that we tested.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(a) Sequential reads.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(b) Random reads.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(c) Sequential writes.

4 8 12 16 20 24 28 32
0
1
2
3
4
5

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

IO request size (KB)

 750SSD 4600SSD DeepFlash

 BaseDeepFlash ManyLayered

(d) Random writes.
Figure 11: Performance comparison.

24HR

24HRS BS
CFS

DADS
DAP

DDR ikk
i

onlin
e

m
adm

ax

to
pgun

webm
ail

ca
sa

webre
sc

h

webuse
rs

Exc
hg

ch
eeta

h

hom
es

webonlin
e

0
1
2
3
4
5 IODedupEnterSRCMap

 750SSD 4600SSD ManyLayered BaseDeepFlash DeepFlash

MPS

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Figure 13: Overall throughput analysis.

Flash activities, compared to writes, as they are accommo-
dated in internal DRAM. In addition, NVMQ requires 1.5%
more compute resources to process write requests than pro-
cessing read requests, which can offer slightly worse band-
width on writes, compared to that of reads. Note that back-
ground activities such as garbage collection and logging are
not invoked during this evaluation as we configured the emu-
lation platform as a pristine SSD.
Server workload traces. Figure 13 illustrates the throughput
of server workloads. As shown in the figure, BaseDeepFlash
exhibits 1.6, 2.7, 1.1, and 2.9 GB/s, on average, for MPS, SR-
CMap, Enterprise and IODedup workload sets, respectively,
and DeepFlash improves those of BaseDeepFlash, by 260%,
64%, 299% and 35%, respectively. BaseDeepFlash exhibits
a performance degradation, compared to ManyLayered with
MPS. This is because MPS generates multiple lock con-
tentions, due to more small-size random accesses than other
workloads (c.f. Table 1). Interestingly, while DeepFlash out-
performs other SSD platforms in most workloads, its perfor-
mance is not as good under DDR workloads (slightly better
than BaseDeepFlash). This is because FCMD utilization is

lower than 56% due to the address patterns of DDR. However,
since all NVMQ threads parse and fetch incoming requests
in parallel, even for such workloads, DeepFlash provides 3
GB/s, which is 42% better than ManyLayered.

6.2 CPU, Energy and Power Analyses

CPU usage and different flashes. Figures 14a and 14b show
sensitivity analysis for bandwidth and power/energy, respec-
tively. In this evaluation, we collect and present the perfor-
mance results of all four microbenchmarks by employing a
varying number of cores (2∼19) and different flash technolo-
gies (SLC/MLC/TLC). The overall SSD bandwidth starts to
saturate from 12 cores (48 hardware threads) for the most case.
Since TLC flash exhibits longer latency than SLC/MLC flash,
TLC-based SSD requires more cores to reduce the firmware
latency such that it can reach 1MIOPS. When we increase
the number of threads more, the performance gains start to
diminish due to the overhead of exchanging many messages
among thread groups. Finally, when 19 cores are employed,
SLC, MLC, and TLC achieve the maximum bandwidths that
all the underlying flashes aggregately expose, which are 5.3,
4.8, and 4.8 GB/s, respectively.
Power/Energy. Figure 14b shows the energy breakdown of
each SSD stage and the total core power. The power and en-
ergy are estimated based on an instruction-level energy/power
model of Xeon Phi [55]. As shown in Figure 14b, DeepFlash
with 12 cores consumes 29 W, which can satisfy the power de-
livery capability of PCIe [51]. Note that while this power con-

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(a) Sequential reads.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(b) Random reads.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(c) Sequential writes.

20 40 60 80 100
0
3
6
9

12

Ac
tiv

e
co

re
s

Time (ms)

 BaseDeepFlash
 DeepFlash

(d) Random writes.

SeqRd
RndRd

SeqWr
RndWr0

20
40
60
80

100

Ac
tiv

e
co

re
 b

rk
do

w
n Flash FCMD TRANS

 CACHE ILOCK NVMQ

(e) Core decomposition.
Figure 12: Dynamics of active cores for parallel I/O processing.

2 4 8 1519
0
1
2
3
4
5

Ba
nd

w
id

th
 (G

B/
s)

#Cores

 SLC
 MLC
 TLC

1MOPS

(a) Bandwidth.

2 4 8 15 19
0

20
40
60
80

100

 FCMD LOG BGC
 TRANS ILOCK
 CACHE NVMQ

En
er

gy
 b

re
ak

do
w

n

#Cores

(%
)

0
10
20
30
40
50

C
or

e
po

w
er

 (W
)

(b) Breakdown.
OoO-1.2G

OoO-2.4G
IO-1G

0
3
6
9
12

M
in

. R
eq

ui
re

d
C

or
es

0
10
20
30
40
50
60

C
or

e
po

w
er

 (W
)

(c) Cores.
Figure 14: Resource requirement analysis.

1 2 4 8 160.0
0.3
0.6
0.9
1.2

Number of SQs

IO
PS

 (M
) Static

 D
ynam

ic

(a) NVMQ performance.

Static Dynamic50
60
70
80
90

IO
PS

/th
re
ad

(K
)

 Avg.

(b) IOPS per NVMQ thread.
Figure 15: Performance on different queue allocations.

sumption is higher than existing SSDs (20∼ 30W [30,58,73]),
power-efficient manycores [68] can be used to reduce the
power of our prototype. When we break down energy con-
sumed by each stage, FCMD, TRANS and NVMQ consume
42%, 21%, and 26% of total energy, respectively, as the num-
ber of threads increases. This is because while CACHE, LOG,
ILOCK, and BGC require more computing power, most cores
should be assigned to handle a large flash complex, many
queues and frequent address translation for better scalability.
Different CPUs. Figure 14c compares the minimum number
of cores that DeepFlash requires to achieve 1MIOPS for both
reads and writes. We evaluate different CPU technologies: i)
OoO-1.2G, ii) OoO-2.4G and iii) IO-1G. While IO-1G uses
the default in-order pipeline 1GHz core that our emulation
platform employs, OoO-1.2G and OoO-2.4G employ Intel
Xeon CPU, an out-of-order execution processor [24] with 1.2
and 2.4GHz CPU frequency, respectively. One can observe
from the figure that a dozen of cores that DeepFlash uses
can be reduced to five high-frequency cores (cf. OoO-2.4G).
However, due to the complicated core logic (e.g., reorder
buffer), OoO-1.2G and OoO-2.4G consume 93% and 110%
more power than IO-1G to achieve the same level of IOPS.

6.3 Performance Analysis of Optimization

In this analysis, we examine different design choices of the
components in DeepFlash and evaluate their performance
impact on our proposed SSD platform. The following experi-
ments use the configuration of DeepFlash by default.
NVMQ. Figures 15a and 15b compare NVMQ’s IOPS and
per-thread IOPS, delivered by a non-optimized queue allo-
cation (i.e., Static) and our DIOS (i.e., Dynamic), respec-
tively. Dynamic achieves the bandwidth goal, irrespective of
the number of NVMe queues that the host manages, whereas
Static requires more than 16 NVMe queues to achieve
1MIOPS (cf. Figure 15a). This implies that the host also re-
quires more cores since the NVMe allocates a queue per host

0.0 0.5 1.00
3
6
9

12
15

N
VM

Q
 th

re
ad

s

Time (s)

 Page-lock ILOCK-base
 ILOCK-1MB ILOCK-forwd

(a) ILOCK impact.

0 1 2 4 20.0
0.5
1.0
1.5

 SeqRd SeqWr
 RndRd RndWr

Number of cache

M
IO
PS

Byp
ass2-

(b) CACHE IOPS.
Figure 16: ILOCK and CACHE optimizations.

0.0 0.1 0.2 0.3
0
2
4

Ba
nd

w
id

th
 (G

B/
s)

Time (s)

 NVMQ

0.0
0.5
1.0

 LOG BGC

(a) LOG/BGC.

24HR
24HRS BS

casa ikki

madmax
online0

2
4
6 Pristine FGC FLOG+FGC

Av
er

ag
e

ba
nd

w
id

th
(G

B/
s)

(b) BGC overhead.
Figure 17: Background task optimizations.

CPU core [10]. Furthermore, the per-thread IOPS of Dynamic
(with 16 queues) is better than Static by 6.9% (cf. Figure
15b). This is because Dynamic can fully utilize all NVMQ
threads when the loads of different queues are unbalanced;
the NVMQ performance variation of Dynamic (between min
and max) is only 12%, whereas that of Static is 48%.
ILOCK. Figure 16a compares the different locking systems.
Page-lock is a page-granular lock, while ILOCK-base is
ILOCK that has no ownership forwarding. ILOCK-forwd
is the one that DeepFlash employs. While ILOCK-base
and ILOCK-forwd use a same granular locking (256KB),
ILOCK-1MB employs 1MB for its lock range but has no
forwarding. Page-lock can activate NVMQ threads more
than ILOCK-1MB by 82% (Figure 16a). However, due to the
overheads imposed by frequent lock node operations and
RB tree management, the average lock inquiry latency of
Page-lock is as high as 10 us, which is 11× longer than that
of ILOCK-forwd. In contrast, ILOCK-forwd can activate the
similar number of NVMQ threads as Page-lock, and exhibits
0.93 us average lock inquiry latency.
CACHE. Figure 16b illustrates CACHE performance with
multiple threads varying from 0 to 4. “2-Bypass" employs the
bypass technique (with only 2 threads). Overall, the read per-
formance (even with no-cache) is close to 1MIOPS, thanks
to massive parallelism in back-end stages. However, write
performance with no-cache is only around 0.65 MIOPS, on
average. By enabling a single CACHE thread to buffer data
in SSD internal DRAM rather than underlying flash media,
write bandwidth increases by 62%, compared to the system of
no-cache. But single CACHE thread reduces read bandwidth
by 25%, on average, due to communication overheads (be-
tween CACHE and NVMQ) for each I/O service. Even with
more CACHE threads, performance gains diminish due to
communication overhead. In contrast, DeepFlash’s 2-Bypass
can be ideal as it requires fewer threads to achieve 1MIOPS.
Background activities. Figure 17a shows how DeepFlash
coordinates NVMQ, LOG and BGC threads to avoid con-
tentions on flash resources and maximize SSD performance.

As shown in the figure, when NVMQ actively parses and
fetches data (between 0.04 and 0.2 s), LOG stops draining
the data from internal DRAM to flash, since TRANS needs
to access their meta information as a response of NVMQ’s
queue processing. Similarly, BGC also suspends the block re-
claiming since data migration (associated to the reclaim) may
cause flash-level contentions, thereby interfering NVMQ’s
activities. As DeepFlash can minimize the impact from LOG
and BGC, the I/O access bandwidth stays above 4 GB/s. Once
NVMQ is in idle, LOG and BGC reactivate their work.
STEADY-STATE performance. Figure 17b shows the
impact of on-demand garbage collection (FGC) and jour-
nalling (FLOG) on the performance of DeepFlash. The re-
sults are compared to the ideal performance of DeepFlash
(Pristine), which has no GC and LOG activities. Compared
to Pristine, the performance of FGC degrades by 5.4%,
while FLOG+FGC decreases the throughput by 8.8%, on av-
erage. The reason why there is negligible performance loss
is that on-demand GC only blocks single TRANS thread
that manages the reclaimed flash block, while the remaining
TRANS threads keep serving the I/O requests. In the mean-
time, LOG works in parallel with TRANS, but consumes the
usage of FCMD to dump data.

7 Related Work and Discussion

OS optimizations. To achieve higher IOPS, host-level opti-
mization on multicore systems [8, 36, 75] have been studied.
Bjorling et al. changes Linux block layer in OS and achieves
1MIOPS on the high NUMA-factor processor systems [8].
Zheng et al. redesigns buffer cache on file systems and rein-
vent overhead and lock-contention in a 32-core NUMA ma-
chine to achieve 1MIOPS [75]. All these systems exploit
heavy manycore processors on the host and buffer data atop
SSDs to achieve higher bandwidth.
Industry trend. To the best of our knowledge, while there
are no manycore SSD studies in literature, industry already
begun to explore manycore based SSDs. Even though they
do not publish the actual device in publicly available market,
there are several devices that partially target to 1MIOPS. For
example, FADU is reported to offer around 1MIOPS (only for
sequential reads with prefetching) and 539K IOPS (for writes)
[20]; Samsung PM1725 offers 1MIOPS (for reads) and 120K
IOPS (for writes). Unfortunately, there are no information
regarding all industry SSD prototypes and devices in terms of
hardware and software architectures. We believe that future
architecture requires brand-new flash firmware for scalable
I/O processing to reach 1MIOPS.
Host-side FTL. LightNVM [9], including CNEX solution [1],
aims to achieve high performance (∼1MIOPS) by moving
FTL to the host and optimizing user-level and host-side soft-
ware stack. But their performance are achieved by evalu-
ating only specific operations (like reads or sequential ac-
cesses). In contrast, DeepFlash reconstructs device-level soft-

ware/hardware with an in-depth analysis and offers 1MIOPS
for all microbenchmarks (read, write, sequential and random)
with varying I/O sizes. In addition, our solution is orthogonal
to (and still necessary for) host-side optimizations.
Emulation. There is unfortunately no open hardware plat-
form, employing multiple cores and flash packages. For ex-
ample, OpenSSD has two cores [59], and Dell/EMC’s Open-
channel SSD (only opens to a small and verified community)
also employs 4∼8 NXP cores on a few flash [17]. Although
this is an emulation study, we respected all real NVMe/ONFi
protocols and timing constraints for SSD and flash, and the
functionality and performance of flexible firmware are demon-
strated by a real lightweight many-core system.
Scale-out vs. scale-up options. A set of prior work proposes
to architect the SSD as the RAID0-like scale-out option. For
example, Amfeltec introduces an M.2-to-PCIe carrier card,
which can include four M.2 NVMe SSDs as the RAID0-
like scale-up solution [5]. However, this solution only offers
340K IOPS due to the limited computing power. Recently,
CircuitBlvd overcomes such limitation by putting eight car-
rier cards into a storage box [6]. Unfortunately, this scale-out
option also requires two extra E5-2690v2 CPUs (3.6GHz 20
cores) with seven PCIe switches, which consumes more than
450W. In addition, these scale-out solutions suffer from serv-
ing small-sized requests with a random access-pattern (less
than 2GB/sec) owing to frequent interrupt handling and I/O
request coordination mechanisms. In contrast, DeepFlash, as
an SSD scale-up solution, can achieve promising performance
of random accesses by eliminating the overhead imposed by
such RAID0 design. In addition, compared to the scale-out op-
tions, DeepFlash employs fewer CPU cores to execute only
SSD firmware, which in turn reduces the power consumption.

8 Conclusion

In this work, we designed scalable flash firmware inspired by
parallel data analysis systems, which can extract the max-
imum performance of the underlying flash memory com-
plex by concurrently executing multiple firmware compo-
nents within a single device. Our emulation prototype on a
manycore-integrated accelerator reveals that it simultaneously
processes beyond 1MIOPS, while successfully hiding long
latency imposed by internal flash media.

9 Acknowledgement

The authors thank Keith Smith for shepherding their
paper. This research is mainly supported by NRF
2016R1C182015312, MemRay grant (G01190170) and
KAIST start-up package (G01190015). J. Zhang and M.
Kwon equally contribute to the work. Myoungsoo Jung is
the corresponding author.

References

[1] CNEX Labs. https://www.cnexlabs.com.

[2] Microsoft SGL Description. https://docs.
microsoft.com/en-us/windows-hardware/
drivers/kernel/using-scatter-gather-dma.

[3] Nvm express. http://nvmexpress.org/
wp-content/uploads/NVM-Express-1_
3a-20171024_ratified.pdf.

[4] Ultra-low Latency with Samsung Z-NAND SSD. http:
//www.samsung.com/us/labs/pdfs/collateral/
Samsung_Z-NAND_Technology_Brief_v5.pdf,
2017.

[5] Squid carrier board family pci express
gen 3 carrier board for 4 m.2 pcie ssd
modules. https://amfeltec.com/
pci-express-gen-3-carrier-board-for-m-2-ssd/,
2018.

[6] Cinabro platform v1. https://www.circuitblvd.
com/post/cinabro-platform-v1, 2019.

[7] Jasmin Ajanovic. PCI express 3.0 overview. In Proceed-
ings of Hot Chip: A Symposium on High Performance
Chips, 2009.

[8] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block IO: introducing multi-
queue SSD access on multi-core systems. In Proceed-
ings of the 6th international systems and storage confer-
ence, page 22. ACM, 2013.

[9] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In FAST, pages 359–374, 2017.

[10] Keith Busch. Linux NVMe driver. https:
//www.flashmemorysummit.com/English/
Collaterals/Proceedings/2013/
20130812_PreConfD_Busch.pdf, 2013.

[11] Adrian M Caulfield, Joel Coburn, Todor Mollov, Arup
De, Ameen Akel, Jiahua He, Arun Jagatheesan, Rajesh K
Gupta, Allan Snavely, and Steven Swanson. Understand-
ing the impact of emerging non-volatile memories on
high-performance, io-intensive computing. In High Per-
formance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–11.
IEEE, 2010.

[12] Adrian M Caulfield, Laura M Grupp, and Steven Swan-
son. Gordon: using flash memory to build fast, power-
efficient clusters for data-intensive applications. ACM
Sigplan Notices, 44(3):217–228, 2009.

[13] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with i/o to
improve flash resource utilization. In Proceedings of the
27th International Symposium on High-Performance
Parallel and Distributed Computing, pages 243–254,
2018.

[14] Wonil Choi, Jie Zhang, Shuwen Gao, Jaesoo Lee, My-
oungsoo Jung, and Mahmut Kandemir. An in-depth
study of next generation interface for emerging non-
volatile memories. In Non-Volatile Memory Systems
and Applications Symposium (NVMSA), 2016 5th, pages
1–6. IEEE, 2016.

[15] cnet. Samsung 850 Pro SSD review.
https://www.cnet.com/products/
samsung-ssd-850-pro/, 2015.

[16] Danny Cobb and Amber Huffman. NVM Express and
the PCI Express SSD revolution. In Intel Developer
Forum. Santa Clara, CA, USA: Intel, 2012.

[17] Jae Do. SoftFlash: Programmable storage in
future data centers. https://www.snia.
org/sites/default/files/SDC/2017/
presentations/Storage_Architecture/
Do_Jae_Young_SoftFlash_Programmable_
Storage_in_Future_Data_Centers.pdf,
2017.

[18] Alejandro Duran and Michael Klemm. The Intel R©
many integrated core architecture. In High Performance
Computing and Simulation (HPCS), 2012 International
Conference on, pages 365–366. IEEE, 2012.

[19] FreeBSD. Freebsd manual pages: flock.
https://www.freebsd.org/cgi/man.cgi?
query=flock&sektion=2, 2011.

[20] Anthony Garreffa. Fadu unveils world’s fastest SSD,
capable of 5gb/sec. http://tiny.cc/eyzdcz,
2016.

[21] Arthur Griffith. GCC: the complete reference. McGraw-
Hill, Inc., 2002.

[22] Laura M Grupp, John D Davis, and Steven Swanson.
The bleak future of NAND flash memory. In Proceed-
ings of the 10th USENIX conference on File and Storage
Technologies, pages 2–2. USENIX Association, 2012.

[23] Amber Huffman. NVM Express, revision 1.0 c. Intel
Corporation, 2012.

[24] Intel. Intel Xeon Processor E5 2620 v3. http://
tiny.cc/a1zdcz, 2014.

[25] Intel. Intel SSD 750 series. http://tiny.cc/
qyzdcz, 2015.

https://www.cnexlabs.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/using-scatter-gather-dma
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
http://www.samsung.com/us/labs/pdfs/collateral/Samsung_Z-NAND_Technology_Brief_v5.pdf
https://amfeltec.com/pci-express-gen-3-carrier-board-for-m-2-ssd/
https://amfeltec.com/pci-express-gen-3-carrier-board-for-m-2-ssd/
https://www.circuitblvd.com/post/cinabro-platform-v1
https://www.circuitblvd.com/post/cinabro-platform-v1
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2013/20130812_PreConfD_Busch.pdf
https://www.cnet.com/products/samsung-ssd-850-pro/
https://www.cnet.com/products/samsung-ssd-850-pro/
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Do_Jae_Young_SoftFlash_Programmable_Storage_in_Future_Data_Centers.pdf
https://www.freebsd.org/cgi/man.cgi?query=flock&sektion=2
https://www.freebsd.org/cgi/man.cgi?query=flock&sektion=2
http://tiny.cc/eyzdcz
http://tiny.cc/a1zdcz
http://tiny.cc/a1zdcz
http://tiny.cc/qyzdcz
http://tiny.cc/qyzdcz

[26] Intel. Intel SSD DC P4600 Series. http://tiny.
cc/dzzdcz, 2018.

[27] Xabier Iturbe, Balaji Venu, Emre Ozer, and Shidhartha
Das. A triple core lock-step (TCLS) ARM R© Cortex R©-
R5 processor for safety-critical and ultra-reliable appli-
cations. In Dependable Systems and Networks Work-
shop, 2016 46th Annual IEEE/IFIP International Con-
ference on, pages 246–249. IEEE, 2016.

[28] James Jeffers and James Reinders. Intel Xeon Phi co-
processor high-performance programming. Newnes,
2013.

[29] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND flash-
based storage systems using dynamic program and erase
scaling. In Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14), pages 61–
74, 2014.

[30] Myoungsoo Jung. Exploring design challenges in get-
ting solid state drives closer to cpu. IEEE Transactions
on Computers, 65(4):1103–1115, 2016.

[31] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T Kandemir. Hios: A
host interface i/o scheduler for solid state disks. ACM
SIGARCH Computer Architecture News, 42(3):289–300,
2014.

[32] Myoungsoo Jung and Mahmut Kandemir. Revisiting
widely held SSD expectations and rethinking system-
level implications. In ACM SIGMETRICS Performance
Evaluation Review, volume 41, pages 203–216. ACM,
2013.

[33] Myoungsoo Jung and Mahmut T Kandemir. Sprinkler:
Maximizing resource utilization in many-chip solid state
disks. In 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA),
pages 524–535. IEEE, 2014.

[34] Myoungsoo Jung, Ellis H Wilson III, and Mahmut Kan-
demir. Physically addressed queueing (PAQ): improving
parallelism in solid state disks. In ACM SIGARCH Com-
puter Architecture News, volume 40, pages 404–415.
IEEE Computer Society, 2012.

[35] Bruce Worthington Qi Zhang Kavalanekar, Swaroop and
Vishal Sharda. Characterization of storage workload
traces from production windows servers. In IISWC,
2008.

[36] Byungseok Kim, Jaeho Kim, and Sam H Noh. Managing
array of ssds when the storage device is no longer the
performance bottleneck. In 9th {USENIX} Workshop
on Hot Topics in Storage and File Systems (HotStorage
17), 2017.

[37] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting storage for smartphones. ACM Transactions
on Storage (TOS), 8(4):14, 2012.

[38] Nathan Kirsch. Phison E12 high-performance SSD
controller. http://tiny.cc/91zdcz, 2018.

[39] Sungjoon Koh, Junhyeok Jang, Changrim Lee,
Miryeong Kwon, Jie Zhang, and Myoungsoo Jung.
Faster than flash: An in-depth study of system chal-
lenges for emerging ultra-low latency ssds. arXiv
preprint arXiv:1912.06998, 2019.

[40] Ricardo Koller et al. I/O deduplication: Utilizing content
similarity to improve I/O performance. TOS, 2010.

[41] Linux. Mandatory file locking for the linux
operating system. https://www.kernel.
org/doc/Documentation/filesystems/
mandatory-locking.txt, 2007.

[42] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in SSD-conscious storage. ACM Transac-
tions on Storage (TOS), 13(1):5, 2017.

[43] marvell. Marvell 88ss1093 flash memory controller.
https://www.marvell.com/storage/
assets/Marvell-88SS1093-0307-2017.
pdf, 2017.

[44] Micron. Mt29f2g08aabwp/mt29f2g16aabwp NAND
flash datasheet. 2004.

[45] Micron. Mt29f256g08cjaaa/mt29f256g08cjaab NAND
flash datasheet. 2008.

[46] Micron. Mt29f1ht08emcbbj4-
37:b/mt29f1ht08emhbbj4-3r:b NAND flash datasheet.
2016.

[47] Yongseok Oh, Eunjae Lee, Choulseung Hyun, Jongmoo
Choi, Donghee Lee, and Sam H Noh. Enabling cost-
effective flash based caching with an array of commodity
ssds. In Proceedings of the 16th Annual Middleware
Conference, pages 63–74. ACM, 2015.

[48] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF: software-
defined flash for web-scale internet storage systems.
ACM SIGPLAN Notices, 49(4):471–484, 2014.

[49] Seon-yeong Park, Euiseong Seo, Ji-Yong Shin, Seun-
gryoul Maeng, and Joonwon Lee. Exploiting internal
parallelism of flash-based SSDs. IEEE Computer Archi-
tecture Letters, 9(1):9–12, 2010.

http://tiny.cc/dzzdcz
http://tiny.cc/dzzdcz
http://tiny.cc/91zdcz
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.kernel.org/doc/Documentation/filesystems/mandatory-locking.txt
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf
https://www.marvell.com/storage/assets/Marvell-88SS1093-0307-2017.pdf

[50] Chris Ramseyer. Seagate SandForce SF3500 client SSD
controller detailed. http://tiny.cc/f2zdcz,
2015.

[51] Tim Schiesser. Correction: PCIe 4.0 won’t support
up to 300 watts of slot power. http://tiny.cc/
52zdcz, 2017.

[52] Windows SDK. Lockfileex function.
https://docs.microsoft.com/
en-us/windows/win32/api/fileapi/
nf-fileapi-lockfileex, 2018.

[53] Hynix Semiconductor et al. Open NAND flash interface
specification. Technical Report ONFI, 2006.

[54] Narges Shahidi, Mahmut T Kandemir, Mohammad Ar-
jomand, Chita R Das, Myoungsoo Jung, and Anand
Sivasubramaniam. Exploring the potentials of parallel
garbage collection in ssds for enterprise storage systems.
In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 561–572. IEEE, 2016.

[55] Yakun Sophia Shao and David Brooks. Energy charac-
terization and instruction-level energy model of Intel’s
Xeon Phi processor. In International Symposium on
Low Power Electronics and Design (ISLPED), pages
389–394. IEEE, 2013.

[56] Mustafa M Shihab, Jie Zhang, Myoungsoo Jung, and
Mahmut Kandemir. Revenand: A fast-drift-aware re-
silient 3d nand flash design. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 15(2):1–26,
2018.

[57] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao,
Xiong-Fei Cai, Seungryoul Maeng, and Feng-Hsiung
Hsu. FTL design exploration in reconfigurable high-
performance SSD for server applications. In Proceed-
ings of the 23rd international conference on Supercom-
puting, pages 338–349. ACM, 2009.

[58] S Shin and D Shin. Power analysis for flash memory
SSD. Work-shop for Operating System Support for Non-
Volatile RAM (NVRAMOS 2010 Spring)(Jeju, Korea,
April 2010), 2010.

[59] Yong Ho Song, Sanghyuk Jung, Sang-Won Lee, and Jin-
Soo Kim. Cosmos openSSD: A PCIe-based open source
SSD platform. Proc. Flash Memory Summit, 2014.

[60] Wei Tan, Liana Fong, and Yanbin Liu. Effectiveness
assessment of solid-state drive used in big data services.
In Web Services (ICWS), 2014 IEEE International Con-
ference on, pages 393–400. IEEE, 2014.

[61] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. In 16th USENIX Conference
on File and Storage Technologies (FAST 18), pages
49–66, 2018.

[62] Linus Torvalds. Linux kernel repo. https://
github.com/torvalds/linux, 2017.

[63] Akshat Verma, Ricardo Koller, Luis Useche, and Raju
Rangaswami. SRCMap: Energy proportional storage
using dynamic consolidation. In FAST, volume 10, pages
267–280, 2010.

[64] Shunzhuo Wang, Fei Wu, Zhonghai Lu, You Zhou, Qin
Xiong, Meng Zhang, and Changsheng Xie. Lifetime
adaptive ecc in nand flash page management. In Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 1253–1556. IEEE, 2017.

[65] Qingsong Wei, Bozhao Gong, Suraj Pathak, Bharadwaj
Veeravalli, LingFang Zeng, and Kanzo Okada. WAFTL:
A workload adaptive flash translation layer with data
partition. In Mass Storage Systems and Technologies
(MSST), 2011 IEEE 27th Symposium on, pages 1–12.
IEEE, 2011.

[66] Zev Weiss, Sriram Subramanian, Swaminathan Sun-
dararaman, Nisha Talagala, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. ANViL: Advanced vir-
tualization for modern non-volatile memory devices. In
FAST, pages 111–118, 2015.

[67] Matt Welsh, David Culler, and Eric Brewer. SEDA:
an architecture for well-conditioned, scalable internet
services. In ACM SIGOPS Operating Systems Review,
volume 35, pages 230–243. ACM, 2001.

[68] Norbert Werner, Guillermo Payá-Vayá, and Holger
Blume. Case study: Using the xtensa lx4 configurable
processor for hearing aid applications. Proceedings of
the ICT. OPEN, 2013.

[69] ONFI Workgroup. Open NAND flash interface specifi-
cation revision 3.0. ONFI Workgroup, Published Mar,
15:288, 2011.

[70] Guanying Wu and Xubin He. Delta-FTL: improving
SSD lifetime via exploiting content locality. In Proceed-
ings of the 7th ACM european conference on Computer
Systems, pages 253–266. ACM, 2012.

[71] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh,
Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita
Shayesteh, and Vijay Balakrishnan. Performance analy-
sis of NVMe SSDs and their implication on real world
databases. In Proceedings of the 8th ACM International
Systems and Storage Conference, page 6. ACM, 2015.

http://tiny.cc/f2zdcz
http://tiny.cc/52zdcz
http://tiny.cc/52zdcz
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-lockfileex
https://github.com/torvalds/linux
https://github.com/torvalds/linux

[72] Jie Zhang, Gieseo Park, Mustafa M Shihab, David
Donofrio, John Shalf, and Myoungsoo Jung. Open-
NVM: An open-sourced fpga-based nvm controller for
low level memory characterization. In 2015 33rd IEEE
International Conference on Computer Design (ICCD),
pages 666–673. IEEE, 2015.

[73] Jie Zhang, Mustafa Shihab, and Myoungsoo Jung.
Power, energy, and thermal considerations in SSD-based
I/O acceleration. In HotStorage, 2014.

[74] Yiying Zhang, Gokul Soundararajan, Mark W Storer,
Lakshmi N Bairavasundaram, Sethuraman Subbiah, An-
drea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.

Warming up storage-level caches with bonfire. In FAST,
pages 59–72, 2013.

[75] Da Zheng, Randal Burns, and Alexander S Szalay. To-
ward millions of file system iops on low-cost, commod-
ity hardware. In Proceedings of the international con-
ference on high performance computing, networking,
storage and analysis, page 69. ACM, 2013.

[76] You Zhou, Fei Wu, Ping Huang, Xubin He, Changsheng
Xie, and Jian Zhou. An efficient page-level FTL to opti-
mize address translation in flash memory. In Proceed-
ings of the Tenth European Conference on Computer
Systems, page 12. ACM, 2015.

	Introduction
	Background
	High Performance NVMe SSDs
	Software Support

	Challenges to Exceeding 1MIOPS
	Many-to-Many Threading Firmware
	Overview
	Queue-gather Stage
	Trans-apply Stage
	Flash-scatter Stage

	Optimizing DeepFlash
	Parallel Processing for NVMe Queue
	Index Lock Optimization
	Non-blocking Cache

	Evaluation
	Performance Analysis
	CPU, Energy and Power Analyses
	Performance Analysis of Optimization

	Related Work and Discussion
	Conclusion
	Acknowledgement

