Storage-Class Memory Needs Flexible Interfaces

Haris Volos', Sankaralingam Panneerselvam*, Sanketh Nalli* and Michael M. Swift*
YHP Labs, Palo Alto and *University of Wisconsin—Madison

Abstract

With low-latency storage-class memory, software can be
a major contributor to access latency. To minimize la-
tency, a file system architecture has to provide flexibility
in customizing the file system interface and semantics to
application needs so as to cut down generic overheads.
We have taken initial steps towards realizing such a de-
sign and present preliminary results.

1 Introduction

Emerging storage-class memory (SCM) [10] technolo-
gies, bring the best of two worlds: the low-latency and
random-access of memory together with the persistence
of disks.

With low-latency storage though, software can be a
major contributor of overhead to access latency. To ad-
dress this issue, previous work has proposed memory
mapping files into the kernel [6] or user mode (e.g., [4])
for direct access to data through load and store instruc-
tions. However, file system functionality that requires ac-
cessing metadata, such as naming, protection, and shared
access, is still provided through the file system interface.
This introduces two pieces of overhead: (i) cost of call-
ing into the kernel, and (ii) cost to abstract a wide range
of resources as files and support generic semantics re-
garding metadata. For instance, even when an applica-
tion implements their own synchronization, the file sys-
tem has to grab locks during writes to support POSIX’s
atomic-write semantics. For metadata intensive applica-
tions, the file-system interface can introduce a substantial

overhead.

We propose implementing flexible file-system inter-
faces as a user-mode library directly accessing file-
system data and metadata in memory. Direct access to
metadata enables the implementation to optimize inter-
face semantics and operations regarding metadata to the
specific needs of the class of applications the library tar-
gets. This helps cut down generic overheads. We have
taken initial steps towards realizing such a design and
present preliminary results. Our results are encouraging.
We can still implement POSIX with good performance,
but with a key-value file interface we can achieve a 86%
performance improvement over a kernel file system. This
suggests that major performance benefits can come by
customizing the interface to the workload.

2 Motivation

The storage landscape today

Emerging storage-class memory (SCM) technologies
promise to change many assumptions about storage.
They have the persistence of storage but the fine-grained
access of memory, and can be attached to the mem-
ory bus and accessed through load and store instruc-
tions [10]. Four recent technologies provide SCM ca-
pabilities: phase-change memory (PCM) [16], spin-
transfer-torque MRAM [13], flash-backed DRAM [1],
and memristors [19]. While the performance and reli-
ability details differ, they all provide byte-granularity ac-
cess and the ability to store data persistently across re-
boots without battery backing. SCMs are currently com-
mercially available in modest sizes of up to 8GB, with
Viking Technology and Micron planning to deliver up to
32GB-size flash-backed DRAM DIMM:s within the com-
ing year [16, 9, 1].

Despite rapid advancements in storage technology, the
fundamental architecture of storage in operating systems
has remained stable: applications invoke the kernel to
store and retrieve data, which invokes a file system and

then a block driver. Four features of past storage tech-
nologies require this layered design in the kernel:

1. Protection: Disks and other block storage devices
do not implement a protection mechanism to limit
access by a user or process.

2. Scheduling: Disks have variable latency from seek
and rotational delays and benefit significantly from
scheduling to reorder requests.

3. Caching: Slow disks benefit from shared caches
that allow processes to re-use data fetched by an-
other process.

4. Drivers: Disks implement a variety of interfaces
and therefore require a driver to present a standard
block interface.

Due to the slow speed of disks and the high benefits of
scheduling and caching, a kernel implementation of file
systems provides many performance benefits at little ad-
ditional cost. For low-latency SCM devices, however,
the cost introduced by this kernel-level layered design is
relatively more expensive and can drastically limit the
performance of SCM.

In fact, several of the services provided by today’s or-
ganization are even unnecessary as SCM has none of
the features that require a kernel implementation of file
systems. As memory, it can be protected by existing
memory-translation hardware. Furthermore, it has much
less need for scheduling to optimize latency, as there are
no long seek or rotation delays. Because SCM provides
speeds near DRAM, shared caching may not be as nec-
essary. Finally, SCM does not require a driver for data
access as it can implement a standard load/store or pro-
tected DMA interface [4]. Previous work has proposed
removing some of the kernel layers providing these ser-
vices, such as scheduling and drivers, by memory map-
ping files directly into the kernel or user-mode processes
for fast access to data [6, 4, 8, 5, 21]. However, they still
rely on the POSIX file-system interface for everything
else, including protection, global naming, and shared ac-
cess.

The abstraction cost of a file

The file-system interface introduces two pieces of over-
head. First, there is a cost of changing modes and cache
pollution from entering the kernel [18]. For example,
PCM read latencies can be as low as 70 nanoseconds,
while the time for a stat system call in Linux on a mod-
ern processor is approximately 800 nanoseconds.
Second, there is a cost due to the generality of the file-
system interface that abstracts every system resource as
a file. This generality offers programming convenience
but comes at the cost of supporting interoperability be-
tween logically different resources, such as disk files and
network sockets. For disks, where the I/O cost dominates
the abstraction cost, abstraction comes at a relatively low

Operation | Latency (us) || Operation | Lat. (us)
stat 0.80 chmod 1.4

open 2.0 fdup 0.15
unlink 3.1 (2.3)

Table 1: Latency of common POSIX operations Un-
link cost in parentheses is the cost of unlinking an open

file.

cost. However, for low-latency SCM, similarly to fast
networking [12], abstraction becomes expensive as the
I/O cost is substantially lower. Abstraction requires the
file-system interface to associate all resources with com-
mon generic data structures, including reference-counted
file descriptors, virtual inodes and dentry objects.

Moreover, generality does not manifest only across
different resources but also within a single class of re-
sources. For our particular class of interest, that is stor-
age files, the file-system interface has to support generic
semantics regarding file metadata, which can have sub-
stantial overhead. For example, POSIX sharing seman-
tics allows files to be unlinked while open. These are use-
ful semantics, for example, for applications that require
creating anonymous files but costly for all other applica-
tions that do not as it requires synchronizing access to
inode metadata to reference count inodes. As shown in
Table 1, unlinking an open file is 34% faster than un-
linking a non-opened one. Since the open file is not re-
ally deleted until it is closed, this difference suggests that
about one third of the time of unlink is spent in managing
underlying inode and dentry structures.

Overall, while the file-system interface comes with a
significant performance cost for accessing SCM, it also
provides useful features, such as organizing data under a
global logical namespace for easy access and protecting
data for secure sharing between applications. Moving
forward, we believe that such features will remain rele-
vant. However, limiting ourselves to accessing these fea-
tures via a single interface and semantics, as we do today
with the POSIX interface to the kernel, will unacceptably
limit performance by their semantics.

3 Key Idea: Flexible Library Interfaces

We propose implementing flexible file-system interfaces
as a user-mode library directly accessing file-system data
and metadata in memory. This provides two key benefits:
(i) low-latency access to data and metadata by remov-
ing layers of the storage stack and avoiding the costs of
trapping into the kernel [18], and more importantly (ii)
flexibility by enabling applications to define their own
file-system interfaces and implementation.

An application can optimize file system policies but
more importantly optimize the interface. Having direct
access to shared metadata is what enables the imple-
mentation to optimize interface semantics and operations

|
|
b | TES |
| libFs |~| |

rotect |
llocate

X
|

SCM MANAGER
OS KERNEL

Read/Wyite
| f

| — 71
Read/Write Data

Figure 1: Decentralized Architecture. Functionality
is distributed between application processes, a trusted
service, and the kernel.

regarding metadata to the specific needs of the class of
applications the library targets. This can be quite bene-
ficial for metadata intensive applications, such as photo
stores [3] and IMAP mail servers [7], that use many small
files and could benefit from a get/put file interface that
optimizes for whole access to small files.

Designing a file system for flexibility and direct ac-
cess is at odds with one of the fundemental roles of file
systems, which is supporting sharing between mutually
distustful programs. Mutual distrust requires programs
to be defensive against possibly malicious actions by a
foreign process. For example, a malicious program may
corrupt metadata invariants in parts of the file system it
has access to such as inserting two files with the same
name in a directory. Fundamentally, addressing these
concerns requires a trusted entity [17]. We want to avoid
resorting to a purely centralized design though; such a
design would require frequent invocation of a kernel- or
server-based trusted file system [15] and would eliminate
the benefits of direct access.

3.1 Architecture

Figure 1 illustrates our proposed architecture. We dis-
tribute functionality between an untrusted library and a
trusted service to efficiently support protection, synchro-
nization, and integrity. We reduce the kernel role to just
multiplexing physical memory via the SCM manager.

libFS Client Library. Applications link against a
libFS library for each file-system interface they use. Our
design relies on hardware protection to enforce access
control over file system data. This allows the client li-
brary to service most file-system operations directly from
SCM without contacting the trusted service. For exam-
ple, when an application opens a file, the library accesses
directory contents in SCM to locate the file and can then

read or write file data directly from SCM. The library
also implements logic to invoke a trusted service when
needed.

Trusted File System (TFS) Service. Functionality
that requires a trusted third party, including integrity for
metadata updates and concurrency control between pro-
cesses, execute in the TFS service. First, for metadata
integrity, clients do not apply metadata updates directly
but instead they create a log of their updates, similar to
a file system journal, and periodically ship the journal to
the TFS. TFS validates the entries in the journal are legal
and preserve invariants, such as link counts and free/al-
locates status. Then, it applies them as a transaction by
forcing the log to SCM and then updating data structures.
Second, to ensure that clients do not journal and batch
conflicting operations, TFS provides a distributed hierar-
chical lock service that issues leases to clients. Leases
can be organized hierarchically to reduce calls into the
service. So for example, a client can do a single call to
acquire a lease on a directory, which implicitly locks the
files of the directory.

Putting it all together, with this architecture, when an
application starts, it calls the library to mount the file sys-
tem, which memory maps the whole file system into the
process and relies on hardware protection to enforce file-
system permissions. With direct access, a program read-
ing a file can read metadata directly to locate the file con-
tents and then read the data directly without calling the
kernel.

3.2 Comparison with related work

Achieving performance improvements by matching ap-
plication needs to storage-system design has been a re-
curring theme in the systems community. For exam-
ple, Google’s GFS optimizes for web data [11] and
Facebook’s Haystack optimizes for images [3]. Exoker-
nel [14] and Nemesis [2] have explored exposing storage
to user-mode for application performance and flexibil-
ity. However, they still maintain protection of the block
device within the kernel, so storage access still requires
invoking a kernel-mode device driver. Thus, accessing
metadata still requires expensive calls into the kernel.
Moreover, their focus is primarily on flexibility to op-
timizing data structure layout for efficient disk access,
while our focus is on flexibility to optimizing the inter-
face to cut down overheads due to generic interface se-
mantics.

Recent work has explored high-performance file-
system designs targeted for SCM. BPFS [6] memory-
maps files directly into the kernel, and Moneta-D [4] and
Quill [8] map files into user-mode processes. Memory-
mapping files enables fast access to data, which in turn
enables the construction of high performance persistent
data structures and stores [5, 21, 20]. However, they

all still rely on the POSIX file-system interface for ev-
erything else, including protection, global naming, and
shared access. Thus, file-system operations continue
paying overheads due to generic interface semantics and
for accessing metadata through the kernel.

4 Open Research Questions

There are several open research questions from the above
architecture. We next discuss several of them.

How to support shared access through different inter-
faces? Supporting different library implementations
that co-exist and provide optimized interfaces on top of
the same memory layout can enable high performance
access to SCM without sacrificying the sharing features
of file systems. This requires however interfaces to be
compatible. For example, a key-value-store interface and
a POSIX-like interface have compatible concurrency se-
mantics because whole-file access via get/put is atomic
and does not run into any concurrency issues with POSIX
operations such as read, write, or unlink. We are in the
process of formalizing what constitutes two interfaces
compatible, that is what semantics, properties and op-
erations they need to have compatible, and identify such
interfaces. For example, is a graph-store interface com-
patible with POSIX?

How limiting is a library interface? Moving the file
system into user mode may preclude interoperability of
the file system with other kernel functionality such as
networking. The main challenge arises from our library’s
lack of file descriptors and system-wide inodes that al-
low interoperability between different types of resources.
File descriptors are deeply engraved into the kernel in-
terface today with many applications depending on their
functionality. For example, process creation allows a
child process created through fork() to inherit file de-
scriptors from its parent. Making a library compatible
with the kernel, and creating file descriptors on demand
when needed [12] could work but in general is hard and
inefficient. We are interested in exploring alternative ap-
proaches to supporting file-descriptor functionality.

What are the security implications? We see two
challenges. First, our architecture may be vulnerable to
resource denial of service attacks where a malicious ap-
plication locks too many files in the file system and does
not relinquish such locks. One strawman solution would
be to terminate such applications, but this approach re-
quires identifying a malicious application from a benign
application that just happens to need to lock a large num-
ber of files. Second, file systems need to avoid leaking
stored data when recycling pages between users without
inefficiently zeroing pages. Kernel file systems do not
suffer from this problem as they mediate access to each
page and therefore control what content is available.

How can we enable scalable crash consistency?
When clients need the equivalent guarantee of an fsync(),
our current design requires a synchronous call into
TFS to durably perform outstanding metadata opera-
tions. However, workloads with frequent fsyncs (e.g.
mailserver) can cause frequent calls into TFS, which can
greatly degrade performance due to the latency overhead
of synchronous communication. We are currently ex-
ploring crash-consistency protocols that do not require
synchronous calls into TFS by leveraging the fact that the
per-client journal of metadata operations can be durably
stored in client local SCM. This property alone though
does not guarantee recovery as the recovery process has
to deal with clients that after failure may no longer hold
locks for the updates logged in their journal.

How flexible and efficient is virtual memory hard-
ware? Hardware memory protection helps us decen-
tralize and optimize access control, but it introduces
three challenges. First, memory and file systems do not
have perfectly compatible protection models: memory
typically grants read or read/write access, while files may
have write-only access. In addition, metadata may have
semantically richer permissions, such as directory list
and search. Second, permission changes on a file must
be efficiently relfected as changed protection on memory
pages. Currently, it may require touching the page-table
entry for every page of a file. Finally, memory mapping
terabytes of SCM into an address space requires a large
page table and increases the pressure on TLBs when us-
ing 4KB pages. Larger pages avoid this problem but in-
crease internal fragmentation. Exploring new hardware
techniques for efficiently protecting and mapping SCM
is an open problem.

5 File-System Interfaces on Aerie

A major goal of Aerie is to provide a substrate for flex-
ible file-system design. To demonstrate this capability,
we implemented two file system interfaces on top of the
same memory layout. The first, PXFS, shows how to
use the storage abstractions to implement a POSIX-style
file system interface for compatibility with existing code.
The second one, KVFS, shows how to optimize the inter-
face for a specific workload.

5.1 PXFS: POSIX-style File System

PXFS provides most POSIX semantics for files and di-
rectories, including moving files across directories and
retaining access to open files after they are unlinked.

PXFS implements file objects as a radix tree of mem-
ory pages and directory objects as a linear hash table
mapping string names to the object identifiers of files and
directories. Each object is identified by its virtual mem-
ory address.

PXFS supports concurrent file access. When a client

opens a file, it creates a volatile shadow file object and
acquires a lock on the file, which it holds until it closes
the file. The shadow object provides a way for the client
to continue accessing the underlying file object when that
file is concurrently unlinked or renamed. When another
client requests the lock on an open file, clients with the
file open notify the service that the file is open when re-
leasing the lock. The service then adds the file into a list
of currently open files. The client can still obtain explicit
locks on the file object to read or write data, and when the
client terminates or notifies the service that it has closed
the file, the service reclaims the file’s memory. This de-
sign guarantees the client can directly access the file even
if other clients unlink or rename it.

With this design, read-only access to files only com-
municates with the TFS service to acquire locks, and if
there are no conflicting accesses, a coarse grained lock
high in the file system tree suffices. The client can write
to file data locally, including writing new data to files, but
must communicate with the service for metadata changes
such as creating or appending to a file.

5.2 KVFS: Key-Value File System

In order to demonstrate how an application can use
Aerie’s facilities to improve performance, we designed
KVES to provide a (i) simple storage model and (ii) a
key-value store interface targeting applications that store
many small files in a single directory, such as an email
client or wiki software. Clients have a shared consistent
view to files through a flat key-based namespace and ac-
cess files through a simple put/get/erase interface. In ad-
dition, all files have the same permissions. In contrast to
PXFS, KVFS does not support POSIX semantics, such
as a hierarchical namespace and unlinking open files.

KVES files are implemented with a contiguous, fixed-
size region holding the entire file contents, thus placing
an upper bound on the supported file size. The file ob-
jects store no other metadata, such as permissions or ac-
cess time. The file system does not have a hierarchical
namespace, so all files are stored in a single hash table
that maps file names to file objects. Thus, KVFS and
PXFS use the same memory layout and differ in the poli-
cies the interface layer uses to allocate and synchronize
data.

We enable scalable concurrent access to the flat key-
based namespace through hierarchical locks. A single
lock covers the whole hash table and multiple locks un-
der the single lock cover the memory pages that com-
prise the hash table. Each page’s lock also covers the
files linked from the key-value pairs stored in the page.

Finally, the get/put interface opens a file and accesses
the data in a single operation, which removes the need to
maintain state about open files in memory.

Benchmark Latency (us)
RamFS | ext3 | PXFS

Sequential read 0.77 0.83 0.7
Sequential write 2.1 1.9 1.5
Random read 1.2 4.5 1.2
Random write 1.4 3.8 1.6
Open 2.0 4.7 3.7
Create 9.2 113.4 134
Delete 3.1 11.6 2.7
Append 5.4 7.5 4.0

Table 2: Latency of common file system operations. All
read/write operations use a 4096-byte buffer.

6 Preliminary Results

The goal of Aerie is flexibility and performance. We
demonstrate performance of our initial prototype with a
mix of application workloads and compare against tradi-
tional file systems. In addition, we show the benefits of
specializing file system design to a workload.

Methodology. We performed our experiments on a
2.4GHz Intel Xeon E5645 six-core (twelve thread) ma-
chine equipped with 48GB of DRAM running x86-64
Linux 3.2.2 kernel. We emulate SCM using DRAM by
adding delays to model SCM’s performance and limit
our model to the most important aspect of performance:
slow writes. We model PCM by accounting for its slower
writes relative to DRAM and introducing a 150ns delay
after each write and limiting write bandwidth to 4GB/s.

We compare Aerie against two Linux file systems.
RamFS uses the VFS page cache and dentry cache as
an in-memory FS and does not provide any consistency
across crashes; it thus serves as a best-case kernel FS.
To compare against file systems that provide crash con-
sistency, we constructed a block-device emulator, SCM-
disk, and mounted an ext3 FS. In both cases, we add de-
lays to emulate the write performance of SCM.

6.1 Microbenchmark Performance

Table 2 shows the latency of common file system oper-
ations on PXFS, RamFS, and ext3. The sequential tests
operate on a 1GB file in 4KB blocks, and the random
workloads randomly access 100MB out of a 1GB file in
4KB blocks. Open/create/delete are measured by open-
ing/creating/removing 1024 4KB files. Because Aerie
batches updates, we report average latency.

As expected RamFS performs consistently better than
ext3 except for sequential write. Writes in RamFS are
performed directly to SCM whereas in ext3 they are
staged in RAM. PXFS performs close to RamFS for all
operations but create and open, where PXFS latency is
45% and 85% higher respectively. Opening a file takes
longer for PXFS because pathname resolution walks the
persistent directory structure for each path component,

%
(=]
o

RamFS
- 400 Wext3
ci
- 300 PXFS
2
8 200 L KVFS
5
100
0 J [N
Fileserver Webserver Webproxy

Figure 2: Average latency to complete one workload
iteration.

and creates a shadow object for POSIX semantics. Of the
3.7us to complete an open call, 0.85s is spent in lookup
and 1.5us in creating a shadow. In constrast, RamFS al-
ready has the objects in memory so it only pays the over-
head of looking up directory entries in the dentry cache,
which is highly optimized for lookups.

Compared with ext3 in the kernel, PXFS is between
15% to 90% faster (average 35%) for all operations.
Open is faster for PXFS because ext3 has to bring the
file into the inode cache. PXFS benefits by not calling
into the kernel, which helps all writes and random reads.

6.2 Application Workload Performance

Figure 2 shows the average latency to complete one
workload iteration for three FileBench workloads: File-
server, Webserver, and Webproxy. The Fileserver work-
load emulates file-server activity and performs sequences
of creates, deletes, appends, reads, and writes. The Web-
server workload performs sequences of open/read/close
on multiple files and appends to a log file. Webproxy per-
forms sequences of create/write/close, open/read/close,
and delete operations on multiple files in a single direc-
tory plus appends to a log file. Each workload is broken
up into individual iterations, and we report the latency of
an iteration. The Fileserver and Webserver benchmark
use 10,000 files, mean directory width of 20, and a 1MB
I/0 size. The mean file size was 128KB for the Fileserver
and 16KB for the Webserver. The Webproxy benchmark
was run with 1000 files, mean directory width of 1500,
mean file size of 16KB, and 1MB I/O size.

Compared to RamFS, PXFS is 35% slower for File-
server and Webserver, but matches the performance for
Webproxy. Compared to ext3, which provides crash con-
sistency, PXFS achieves 36% and 39% lower latency for
the Fileserver and Webproxy workloads. Surprisingly,
PXFS performs poorly compared to RamFS and ext3 for
the Webserver workload. Since the workload is a read-
mostly workload (open/read/close), we expected that di-
rect access will greatly benefit this workload. The rea-
son for low performance is that the workload is domi-
nated by the cost to open a file, which for PXFS is higher
compared to RamFS and ext3. This happens due to the

lack of caching, which forces PXFS to re-walk persistent
structures on every access. In particular, PXFS spends
68% of the total workload time in re-walking persistent
directories during path-name traversal. For this reason,
we are currently exploring adding a path-name cache to
PXFS to reclaim much of the performance difference.

6.3 Workload-Specific Performance

A key motivator for direct access is the ability to cre-
ate workload-specific file system interfaces. We com-
pare the performance of KVFS with a get/put interface
in a single directory on the Webproxy workload, whose
usage fits the KVFS interface. Figure 2 shows the per-
formance of KVFS for the Webproxy workload. KVFS
is 86% faster than RamFS and 79% faster than PXFS.
The biggest benefit comes from using a get/put interface
instead of open/read/write/close. With the standard in-
terface, PXFS must create a temporary in-memory ob-
ject representing an open file and record the file offset
on every read. With get/put, KVFS can locate the file in
memory and copy it directly to an application buffer.

7 Conclusion

New storage technologies promise high-speed access to
storage directly from user mode. = We have presented
a decentralized file-system architecture that represents a
new design targeting SCM, and reduces the kernel role
to just multiplexing physical memory. Applications can
achieve high performance by optimizing the file-system
interface for application needs without changes to com-
plex kernel code.

Initial results with implementing a POSIX and key-
value file-system interface to SCM on top of our archi-
tecture have been encouraging. We can still implement
POSIX with good performance but the performance im-
provements really come from customizing the interface
to the workload. Moving forward, we plan to further ex-
plore interface designs and address the open questions
we outlined.

References

[1] Memory that never forgets: non-volatile DIMM:s hit the
market. ArsTechnica, Apr. 2013.

[2] P. R. Barham. A fresh approach to file system quality of
service. In NOSSDAV, May 1997.

[3] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.
Finding a needle in Haystack: Facebook’s photo storage.
In OSDI 9, Oct. 2010.

[4] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson. Providing safe, user space
access to fast, solid state disks. In ASPLOS 17, Mar. 2012.

[5] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: making

(6]

(7]

(8]

(91

(10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

persistent objects fast and safe with next-generation, non-
volatile memories. In ASPLOS 16, Mar. 2011.

J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In SOSP 22, Oct. 2009.

Dovecot. Mailbox formats. http://wiki.dovecot.
org/MailboxFormat/.

L. A. Eisner, T. Mollov, and S. Swanson. Quill: Exploit-
ing fast non-volatile memory by transparently bypassing
the file system. Technical report, UCSD, 2013.

Everpsin. Everspin debuts first spin-torque mram for high
performance storage systems. http://www.everspin.
com/PDF/ST-MRAM_Press_Release.pdf, Nov. 2012.

R. F. Freitas and W. W. Wilcke. Storage-class memory:
the next storage system technology. IBM Journal of Re-
search and Development, 52(4):439—447, 2008.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google
file system. In SOSP 19, Oct. 2003.

S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
Megapipe: a new programming interface for scalable net-
work i/o. In OSDI, 2012.

Y. Huai. Spin-transfer torque mram (STT-MRAM): Chal-
lenges and prospects. AAPPS Bulletin, 18(6):33-40, Dec.
2008.

M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Bricefio, R. Hunt, D. Mazieres, T. Pinckney, R. Grimm,
J. Jannotti, and K. Mackenzie. Application performance
and flexibility on exokernel systems. In SOSP 16, Oct.
1997.

D. Mazieres. A toolkit for user-level file systems. In
USENIX ATC, June 2001.

Micron. Mobile LPDDR2-PCM. http://www.micron.
com/products/multichip-packages/pcm-based-
mcp, July 2012.

M. D. Schroeder. Cooperation of Mutually Suspicious
Subsystems in a Computer Utility. PhD thesis, Mas-
sachusetts Institute of Technology, 1972.

L. Soares and M. Stumm. FlexSC: Flexible system call
scheduling with exception-less system calls. In OSDI 9,
Oct. 2010.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S.
Williams. The missing memristor found. Nature, 453:80—
83, 2008.

S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for non-
volatile byte-addressable memory. In FAST 9, Feb. 2011.

H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In ASPLOS 16, Mar.
2011.

