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Abstract
Current processors provide a variety of different process-
ing units to improve performance and power efficiency. For
example, ARM’S big.LITTLE, AMD’s APUs, and Oracle’s
M7 provide heterogeneous processors, on-die GPUs, and on-
die accelerators. However, the performance experienced by
programs on these accelerators can be highly variable due
to issues like contention from multiprogramming or thermal
constraints. In these systems, the decision of where to exe-
cute a task will have to consider not only stand-alone perfor-
mance but also current system conditions and the program’s
performance goals such as throughput, latency or real-time
deadlines.

We built Proteus, a kernel extension and runtime library,
to perform scheduling and handle task placement in such
dynamic heterogeneous systems. Proteus enables programs
to perform task placement decisions by choosing the right
processing units with the libadept runtime, since programs
are best suitable to determine how to achieve their perfor-
mance goals. System conditions such as load on accelera-
tors are exposed by the OpenKernel, the kernel component
of Proteus, to the libadept enabling programs to make an in-
formed decision. While placement is determined by libadept,
the OpenKernel is also responsible for resource manage-
ment including resource allocation and enforcing isolation
among applications. When integrated with StarPU, a runtime
system for heterogeneous architectures, Proteus improves
StarPU by performing 1.5-2x better than its native schedul-
ing policies in a shared heterogeneous environment.
1. Introduction
Systems with heterogeneous processors and a variety of ac-
celerators are becoming common as a solution to the power
wall [36, 62]. Major vendors like Intel and AMD have started
packing CPU and GPU on the same chip [2, 9]. ARM’s
big.LITTLE architecture [3] packs processors made from
different microarchitecture on the same die. IBM’s Wire-
Speed processor [32] and Oracle’s M7 [49] are provisioned
with accelerators for specific tasks like XML parsing, com-
pression, encryption, and query processing.

In addition to static heterogeneity from different process-
ing units, future systems will exhibit dynamic heterogeneity
where the performance observed by programs on these pro-
cessing units can vary over time for various reasons. First,
contention for accelerators [34, 56] alters the performance
benefits for programs. Given the maturity in programming

models [4, 11, 14], many programs will try to leverage ac-
celerators and compete for access to them. The growth in
virtualization also promotes contention, as accelerators may
by shared not just by multiple programs but also by multiple
guest operating systems [34]. Second, power and thermal
limits can prevent all processing units from being used at full
power [38] and processing units performance (e.g., proces-
sor p-state) can vary as a result. More generally, future chips
will have more Dark Silicon [31] where only a fraction of
the logic can be used concurrently. Finally, the data copy
overhead can greatly diminish performance benefits offered
by certain accelerators [58].

Building systems to accomodate programs with different
metrics such as throughput for servers, latency for interactive
applications, deadlines for media applications, or minimum
resource usage for cloud applications, in such a highly dy-
namic environment becomes extremely difficult. However, a
major trend that can be leveraged in such heterogeneous sys-
tems is that same program task—parallel region of code or
encrypting a data chunk—can often be executed on different
processing units with different performance or energy effi-
ciency. For example, a parallel region can be run on a GPU
or multi-core CPUs and encryption can be performed using
a crypto accelerator or AES instructions. Programs designed
to be adaptable can thus be scheduled on alternate process-
ing units to achieve their desired goals.

Current operating systems treat accelerators such as
GPUs as external devices, and hence provide little support
for applications to decide where to best run their code.
Similarly, there is little support for heterogeneous proces-
sors (e.g., big.LITTLE) today. In research, there are pro-
posed system schedulers to schedule tasks on heterogeneous
cores (e.g., [57]) or coordinated CPU/GPU scheduling (e.g.,
[34, 47, 56]). These systems modify the OS kernel to address
contention for resources, but do not support applications that
can use multiple different processing units, such as running
code either on a CPU or a GPU or using an accelerator.

Conversely, application runtimes for heterogeneous sys-
tems, automatically place application tasks on a process-
ing unit from user mode [17, 21]. They offload user-defined
functional blocks, such as encrypting a chunk of data, com-
pressing an image, or a parallel computation, to the best ac-
celerator or processing unit available. However, existing run-
times assume static heterogeneity, where the performance of
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a processing unit does not vary over time due to contention
from other applications or power limits.

The goal of our work is to efficiently execute programs
on dynamically heterogeneous systems. This requires a sys-
tem that adapts to current system conditions, such as load
on different processing units. We propose that the operat-
ing system alone should manage shared resources, such as
accelerators, by performing resource allocation, monitoring
and isolation. Programs then dynamically adapt to available
resources by placing tasks on suitable processing units to
achieve their own performance goals.

We built Proteus, a decentralized system that extends
Linux by separating resource management from task place-
ment decisions, as a starting step towards this goal. The
OpenKernel is a kernel component that provides resource
management—allocating resources, enforcing scheduling
policies over all processing units and publishing usage infor-
mation such as accelerator utilization that enables programs
to adapt to system conditions.

The libadept runtime layer is the user-mode component
of Proteus that makes task placement decisions. It presents
a simple interface to execute tasks and acts as an abstrac-
tion layer for the processing units present. The runtime also
builds a performance model of program tasks on different
processing units. At runtime, libadept combines this model
with system state information from the OpenKernel to pre-
dict a task’s performance on different processing units. Ap-
plications can specify a performance goal that the runtime
uses to select the best unit for the task to achieve the appli-
cation’s goal, such as low latency or high throughput.

Applications that benefit more from using a specific pro-
cessing unit will continue to use it even under contention,
while those that benefit only slightly will migrate to other
processing units [53]. As a result, even with fully decen-
tralized placement decisions, applications with the highest
speedup will receive access to the processing unit.

While designed for stand-alone use, Proteus can also act
as an execution model for other programming systems. For
example, we modified StarPU [21], which distributes tasks
among heterogeneous processing units but is not aware of
contention, to use Proteus to make task placement decisions
based on system conditions. This enables existing applica-
tions written for StarPU to be easily ported to our system
without any modifications.

We performed an extensive set of experiments with GPUs
and emulated heterogeneous CPUs on a variety of work-
loads. We show that Proteus enables StarPU to perform bet-
ter than StarPU’s native scheduling policies by 1.5-2x. This
illustrates that Proteus is better than systems that rely on
static performance. We also show that the performance of the
Proteus’s decentralized design is comparable to a centralized
scheduler with global view of the system. Proteus provides
isolation among applications though it allows applications to

make task placement decisions. Finally, we show that appli-
cations can achieve customized goals in Proteus.
2. Design
The major design goals for Proteus are:
1. Adaptability. A program should continuously adapt to

changing system conditions when choosing where to ex-
ecute code.

2. Efficiency. Programs that achieve higher speedups on a
processing unit should receive more access to it.

3. Isolation. The accelerators should be treated as shared
resources and isolation among applications using them
should be governed by a global policy irrespective of the
runtimes used by the applications.

4. Unintrusive. Minimal OS changes should be required.
We designed Proteus as a decentralized architecture sep-

arating resource management (how much access a process
gets to a resource), from task placement (where tasks run)
decisions as shown in Figure 1. The former is left to the
kernel, which is responsible for isolation, while the latter
is pushed closer to applications. The application runtime
identifies the best processing unit to execute each task. Un-
like other systems that performs resource management and
task placement in the kernel [34, 56, 57], Proteus divides the
functionalities for the following reasons:
• Moving placement to applications simplifies the kernel,

which only needs to handle scheduling [30].
• Selecting the best processing unit requires a performance

model of the application. Moving this to application al-
lows them to benefit from application-specific models.

• Applications have the best knowledge of their scheduling
goals, such as real time for media applications, and hence
are best equipped to choose between different processing
units with different performance characteristics [6, 18].

• Some accelerators can be accessed directly from user-
mode [32], so invoking a centralized system can increase
latency [47].

Terminology. (i) We use the words application and program
interchangeably. (ii) The term processing units refers to all
compute units including CPUs, GPUs, and accelerators. (iii)
Task in Proteus refers to a coarse-grained functional block
such as a parallel region or a function, such as encrypting
a block of data, that executes independently and to comple-
tion. (iv) We use the term scheduling to mean selecting the
next task to execute on a processing unit, and for deciding
how long that task may run (if possible). We use placement
to mean selecting the processing unit for a task. Many sys-
tems, including Linux, have a per-core scheduler and a sep-
arate placement mechanisms for assigning threads to cores.

2.1 Platform Requirements

We designed Proteus to target heterogeneous systems
with multiprogrammed workloads such as hand-held de-
vices [19], cloud servers hosting virtual machines [1] and
shared clusters [41].
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Figure 1. Proteus architecture
Heterogeneous. Proteus target architectures that provide
heterogeneous processing units in the form of discrete or
on-chip accelerators, and both single-ISA and multi-ISA
heterogeneous processors. Target systems include unified
CPU/GPU chip, such as AMD’s APUs [2], systems with dis-
crete GPUs, or with on-chip accelerator devices [32, 61].
Multiprogrammed. Without multiprogramming, a single
application can take complete control of the hardware and
thus assume the heterogeneity is static and predictable. In
contrast, multiprogramming leads to contention and variable
performance as applications come and go.

2.2 Resource Management

Proteus promotes shared resources like accelerators as first-
class entities through its resource management support in the
kernel. The major responsibilities of the kernel layer in Pro-
teus are resource allocation, enforcing isolation and expos-
ing system state information about processing units. We call
this kernel component the OpenKernel because of the trans-
parency it provides to applications. The OpenKernel consists
of Accelerator Agents, which act as resource managers and
the Accelerator monitor, which publishes usage information
from agents.

2.2.1 Accelerator Agents

In order to support a wide variety of devices with different
characteristics, Proteus attaches an agent to each unique type
of processing unit. The agent acts as a sub-scheduler for a
pool of similar processing units, such as small CPU cores.
The resource allocation decisions are based on a policy su-
ported by every agent. Policy types such as share-based and
policy information like higher share for important applica-
tions are provided to the agent by the administrators. Policy
enforcement allows Proteus to provide isolation even in the
presence of a malicious application that could overload the
accelerator device. Irrespective of the runtime—OpenCL or
CUDA to access GPU—used by an application to offload
task to a processing unit, the task has to reach the device
through the agent in Proteus. After policy enforcement (like
throttling after exhausting shares) the agent uses the device
driver to launch tasks on accelerator devices. For asymmet-
ric CPU cores, it creates a worker thread affinitized to each

core, to which an application enqueue tasks. Proteus only ex-
poses the ability to select a type of processing unit for a task,
similar to processor affinity, but does not allow user-mode
code to make scheduling or resource allocation decisions.

Agents are also responsible for sharing state information
about the processing units it manages, such as the usage of
different processing units, to applications. The agent tracks
information like the utilization of a processing unit by ev-
ery application, average size of tasks, and number of appli-
cations. This information is provided by the agents to the
accelerator monitor, which publishes it to applications. Ap-
plications can use this information to predict when they can
use the device and for how long.

2.2.2 Accelerator Monitor

The accelerator monitor is a centralized kernel service that
publishes state information from various agents and enables
applications to determine the best processing unit to run a
task. Some information, such as total utilization of a process-
ing unit, is published globally to all applications. Other in-
formation, such as an application’s expected share of a unit,
is private to a process. The per-application information re-
flects the priority, share, or scheduling guarantees of an ap-
plication. For example, processing units that have been re-
served for exclusive use by one application will show up as
busy for all other applications.

2.3 Task Placement

Proteus follows other runtimes for heterogeneous architec-
tures [4, 11, 21, 52] and employs a task-based programming
interface. The programmer or compiler generates task im-
plementations for multiple processing units (not necessary
for single-ISA systems). There are several runtimes [4, 11],
research systems [29, 44] and initiatives like HSAIL [8] that
allow code to be written once and then compiled into bina-
ries optimized for different compute devices. For more var-
ied architectures, such as fixed-function accelerators, a pro-
grammer may have to code multiple implementations.

The user-mode runtime layer of Proteus is contained in
the libadept library and provides three key services. First,
the runtime builds a performance model for every program
task on each processing unit, which allows it to predict per-
formance. Second, it provides a simple interface for plac-
ing tasks on the best available processing unit. Finally, it al-
lows applications to specify performance goals that guide
the placement decision. These three services combined pro-
vide the ability for the runtime to make smart task placement
decisions in order to achieve application specific goals.
Performance model. The runtime builds a model to predict
the performance of program tasks on different processing
units with the help of a task profiler. The model is built by
executing the program’s tasks on different processing units
and extracting information like processing time per unit data
from the task execution time and the amount of data the
task operated on. In addition, the profiler measures overhead
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of using a processing unit such as dispatch time and ata
copying. These measurements form a model that can be used
to predict performance of a task on any processing unit in
the system. We later discuss applications that do not follow
this assumption in § 3.2. We should also note that the model
output is the stand-alone task performance. The model must
be combined with the system state information to predict the
actual latency to finish a task on a processing unit.
Accelerator stubs. Proteus abstracts different processing
units into a single procedural interface, so application de-
velopers reason about invoking a task but not where the task
should run. Applications invoke the stub interface to launch
a task. Stubs use information from the OpenKernel and the
performance model from the profiler to predict the perfor-
mance of the task on all available processing units. The pro-
cessing unit that yields the best performance is chosen based
on these predictions and the stub passes data to the imple-
mentation by handling data migration for processing units
that lack coherent memory, such as GPUs.
Optimizer. The optimizer is a background service in the run-
time and runs as part of the application. The optimizer act as
a long term scheduler [55] aiming to achieve performance
goals set by the user like a minimum throughput guarantee.
The optimizer either requests more or fewer resources from
OS, or notifies the application to increase or decrease work-
load based on resources available. For example, a compres-
sion algorithm may reduce its compression factor to keep up
with the rate of incoming data, or a latency-sensitive applica-
tions may choose to give up on quality of the output [37, 51]
by opting for a processing unit with the shortest queuing de-
lay, while throughput-oriented programs may be willing to
wait in order to process a larger volume of data.
3. Implementation
We implemented Proteus as an extension to the Linux 3.4.4
kernel. The code consists of accelerator agents for CPU and
GPU, the accelerator monitor, and the libadept shared library
linked to user-mode applications. The OpenKernel and the
libadept runtime consists of around 2000 and 3400 lines of
code respectively. In this section we describe the implemen-
tation of Proteus, beginning with how agents schedule tasks
and then discuss about user-mode task placement.

3.1 Accelerator Agents

We implemented accelerator agents for GPUs and heteroge-
neous CPU (with both standard and fast cores). These agents
enforce a scheduling policy that reorders requests to achieve
policy goals and export device usage information to the ac-
celerator monitor. Table 1 shows the details exposed by the
agents. Proteus does not yet handle directly accessible ac-
celerators, but disengaged schedulers [47] can be extended
to implement the agent functionality for such devices.
GPU agent. The GPU agent manages all GPUs present and
currently relies on vendor-specific kernel drivers to submit
tasks to the GPU units. GPU drivers are usually closed bi-

Agent Details Published Visibility
CPU # active threads at each priority level Global

Schedule time ratio for each priority Global
# standard cores per application Local

GPU Current utilization by an application Local
Maximum share allowed for an application Local
Average task size Global
# active applications Global
Runqueue status of each priority queue Global

Table 1. Details published by agents.
naries that we cannot extend with agent functionality. We
therefore move the GPU agent functionality into a separate
kernel-mode component that receives scheduling informa-
tion from an administrator and enforces scheduling policy.
The runtime calls the GPU agent before offloading any tasks,
which can then stall tasks to enforce the scheduling policy.
To track device usage, libadept pass task execution time to
the agent after the task complete. The runtime’s assistance
could be avoided if the agent could be better integrated with
the GPU driver. Additional support like interfaces to add new
scheduling policies might be needed.

The agent calculates the utilization for each application
with the information passed by the runtime. Short-lived pro-
cesses do not accumulate much utilization (current utiliza-
tion is zero) and so, agents also report the average task size
on a processing unit and the number of applications using the
device. We implement three different policies in the agent:
FIFO, Priority-based and Share-based. The FIFO policy is
the default policy in GPU drivers and exposes a simple FIFO
queue for scheduling tasks from different applications.

The FIFO model cannot provide equal utilization if tasks
have different execution times: a long task can monopolize
the device because current GPU drivers only support con-
text switching at kernel (i.e., task) granularity. The Priority-
based policy prevents monopolization by allowing higher-
priority applications to run before lower-priority ones. How-
ever, without preemption support from GPU drivers, low la-
tency cannot be guaranteed if a long task is running. Current
GPU drivers do not support preemption.

The Share-based policy provides strong performance iso-
lation among applications. This policy defines three appli-
cation classes: CUSTOM, NORMAL and BACKGROUND.
In the CUSTOM class, designed for applications with strict
performance requirements, applications reserve an absolute
share of one or more GPUs, and the total shares on a device
cannot exceed 100. Possession of 50 shares on a GPU guar-
antees the application a minimum of 50% time on the de-
vice. Shares offered by this policy are specific to a process-
ing unit. The shares unused by the CUSTOM class are given
to applications in the NORMAL class, where the remaining
shares are equally distributed amoung applications. Finally,
BACKGROUND applications use the GPUs only when ap-
plications of the other two classes are not using the device.

The share-based policy is the default policy in Proteus.
The agent throttles applications using more than their share.
Thus, following a long task, an application will be blocked
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from running more tasks to let other applications use the
GPU. Since the shares are proportional [63], the share for
a device is always normalized to the total shares of active
applications using the device.
CPU agent. The CPU agent supports two classes of CPU
cores, standard and fast, under the assumption that parallel
code will run better on more standard cores, while mostly
sequential code will run better on one or a few fast cores.
The agent leverages Linux’s native CFS scheduler [5] for
scheduling on CPU cores. It also publishes state informa-
tion like the # of threads and ratio of time obtained by
threads at each priority level. This information helps to pre-
dict contention on fast cores. The share based policies (de-
scribed above) for strong performance guarantees can be im-
plemented by dynamically mapping the amount of shares to
a nice priority value. This leverages the fact that every prior-
ity level has a time slice ratio over other levels.

Additionally, for standard cores, the agent provides hints
on the number of standard cores a program can use without
contending with other parallel programs. The calculation is
based on a min-funding [64] policy: all cores are allocated
to applications based on their priority or share, and unused
cores are redistributed. For example, if a single-threaded ap-
plication uses a single core, and other cores it could use are
instead given to parallel applications. This additional infor-
mation enables parallel applications to tune their parallelism
accordingly.
Accelerator monitor. The accelerator monitor aggregates
information from all agents and exposes it to applications.
It shares two pages of data with every Proteus application,
which have read-only access to the pages. The global data
page is mapped in all Proteus processes and has global
information, such as the average task size on a GPU device.
The private page has application-specific information, such
as its maximum allowed utilization for each processing unit.

The monitor provides a simple interface that takes as pa-
rameters the visibility type, information identifier and a new
value to be updated. When an agent’s state changes, such as
when new tasks are submitted or existing ones complete, it
notifies the monitor. Agents calculate utilization information
at periodic intervals of 25ms, which then gets pushed to the
monitor. We currently do not synchronize access between
the monitor and applications. However, the data is entirely
scalar values used as scheduling hints, so races are benign.

3.2 libadept Adaptive Runtime

Every Proteus application links to libadept, which consists
of the task profiler, optimizer and stubs.
Performance model. The runtime includes a profiler that
is responsible for building and maintaining a performance
model for application tasks. The profiler predicts the task
execution time by the amount of data processed by the
task. If the model parameters—like processing time per unit
data—are not available (start of a new application), the run-

time executes the initial set of application’s tasks on differ-
ent processing units similar to the techniques employed in
Qilin [45]. The task execution time over the amount of data
passed to the task gives the processing time per unit data for
that processing unit. We are assuming that the task execu-
tion is proportional to the amount of data it uses. The model
is saved for use across program invocations. For short-lived
applications, the model parameters are calibrated over mul-
tiple invocations of the application.

To detect if the performance model must be updated due
to program changes, the profiler constantly measures the pre-
dicted task execution time against the actual execution time.
The model calibration process is repeated if the variation is
more than 25% for more than 10 predictions. The model cal-
ibration is performed again to recalculate model parameters.
libadept runs a generic profiling task during system startup
to measure the data copy latency and bandwidth for all pro-
cessing units in the system. The data copy overhead is set
to zero for devices with coherent access to memory (e.g.,
CPUs), because not explicit copy is required.

The current implementation of libadept does not account
for the contention in I/O bus. So, the data copy is considered
to have a fixed overhead in addition to the per-byte cost. We
also found that our current model did not suit workloads with
data-dependent execution time, like Sphyraena (Table 4) that
performs SQL select query execution. The execution time
was dependent on the selectivity of the operators which our
model did not consider. We are investigating more mature
profilers that could provide better models [33, 43, 48].
Accelerator stubs. The stub interface is responsible for find-
ing the right processing unit for a given task. It requires
multiple implementations of the task for different process-
ing units. The code can be identical for the single-ISA archi-
tectures or if a compiler can generate code for multiple ar-
chitectures. Currently, we rely on OpenCL [11] to generate
versions of task for GPU and CPUs. But, application devel-
opers can also provide hand-optimized implementation for
processing units. Task setup entails registering a task identi-
fier with a task object that points to a set of implementations.

Applications launch tasks with the Accelerate() func-
tion, which takes a task identifier and boolean variable to
denote a synchronous or an asynchronous offload. This func-
tion uses the model from the profiler and the utilization in-
formation from the monitor to choose the best processing
unit for the task. The actual task latency is predicted as:
Latency = Data Copy + (Predicted Task Latency ∗

(100 / Utilization))

The utilization factor implicitly captures the running time
as well as the waiting time of the task. The profiler provides
the predicted latency and the agent provides the utilization.
The stub chooses the current utilization or the maximum uti-
lization value (Table 1) based on the policy (FIFO or share-
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based) employed by the agent. The maximum utilization re-
flects the share given to the application.

Dispatching task onto a GPU involves informing the GPU
agent about the task start, managing any data movement and
finally invoking the OpenCL or CUDA runtime to submit the
task to the kernel driver. For processing units with coherent
memory, no movement is required. For those without coher-
ence, such as discrete GPUs, stubs explicitly migrate data
to and from the GPU’s memory when necessary. libadept
calculates data movement cost, based on profiler measure-
ments, when predicting task performance.

To dispatch tasks onto CPU cores, libadept starts worker
threads for each CPU class in the system during program
startup (e.g., standard and fast), and dispatches tasks to
workqueues serviced by the worker threads. The runtime
sets affinity mask for these threads to the CPUs in the class.

For asynchronous tasks, stubs return an event handle to
the application and queue the task to an internal scheduler
that maintains a central queue. Tasks are processed (the pre-
diction process) in-order and then pushed onto processing
unit-specific task queues. The application, though, must en-
force data dependencies between tasks. Task execution may
not happen immediately upon queuing to the central queue.
Scheduler keeps the number of pending tasks for a process-
ing unit low to maintain predictor accuracy by avoiding a
long latency between selecting a unit and executing a task.
Optimizer. Proteus enables applications to target different
performance goals, such as throughput guarantees or min-
imum execution time (best performance) or energy effi-
ciency. The optimizer expects two inputs: the expected per-
formance (e.g. 100 MB/Sec or 10 Frames/Sec) and, a tracker
function that measures application performance. The opti-
mizer spawns a thread to periodically (every 500ms) invoke
the tracker function. libadept implements trackers to record
amount of data processed per second and number of tasks
run per second. Applications can choose from them or pro-
vide a custom performance tracker function.

The optimizer operates in three phases when the tracker
function indicates that an application is not meeting its goal.
First, the optimizer tries to spread tasks across more pro-
cessing units. Applications can thus offload multiple (asyn-
chronous) tasks at once to different units. Second, it attempts
to increase shares on different processing units by calling
into the OS (agents). This phase expects the application to be
in CUSTOM class, and is important if applications need to
meet strict performance goals (e.g., throughput or soft real-
time). If the second phase does not succeed, the optimizer
notifies the application via a registered callback function,
and the application can modify its workload. For example, a
game could reduce its frame rate or resolution. Upon avail-
ability of more resources (when other applications exit), the
application automatically gets additional resources since the
shares are proportional.

The above three phases are performed in reverse if an
application exceeds its goals. This allows the application to
modify its workload to increase its workload like frame rate.
Applications without any goal are run by default for best per-
formance (minimum execution time) and the optimizer does
not run in this case. Applications belonging to other schedul-
ing classes can still leverage the optimizer but a consistent
performance cannot be guaranteed. The application perfor-
mance is mostly best-effort with the option of application
reducing fidelity for increased performance.

/*** Libadept ***/
void Accelerate(Task *task , bool sync) {

/* 1. Iterate through all processing units
2. Calculate actual task latency on all units
3. Let punit be processing unit offering minimum

latency */
Schedule(task , punit);

}
/*** Application ***/

void TaskGpu(void *args) {/* Task logic on GPU */}
void TaskCPU(void *args) {/* Task logic on CPU */}
int main() {

...
Task *task = IntializeAcceleratorTask(SIMD , TaskGPU

, TaskCPU , args);
Accelerate(task , ASYNC);
WaitForTask(task);

...
}

Listing 1. Program using libadept
Data movement. When the optimizer chooses a process-
ing unit for the task, the stub must migrate dependent data
to the destination accelerator. Switching between different
processing units hurts performance, as data moves back and
forth. This can occur when a task is at the break-even point
between two processing units, so a small change in utiliza-
tion can push the task to switch processors. It can also occur
when there are rapid changes in the utilization of a unit and
predictions of performance are inaccurate.

Proteus implements mechanisms to avoid both causes of
task migration. For tasks near the break-even point, Pro-
teus dampens movement with a speedup threshold: tasks
only migrate if the expected speedup is high enough to
quickly amortize the cost of data movement. Thus, small
performance improvements that require expensive copies
are avoided. In addition, for subsequent task offloads, stubs
make an aggregate decision that determines where to dis-
patch the next group of tasks, rather than making the dis-
patch decision for each task before switching to the new
unit. In this task aggregation, group size grows with the data
movement overhead.
Stability. Rapid changes in utilization can occur when mul-
tiple applications simultaneously make an offload decision:
they may all run tasks on the same processing unit, leading to
poor performance and then all migrate away from the unit.
This ping-pong problem is common to distributed control
systems, such as in routing [42]. The major source of this
problem is the staleness in the published information [28].
Proteus tries to reduce the staleness by making the agents
update the utilization information at regular intervals rather
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Name System Configuration Accelerators
asym config 12 cores in 2 Intel Xeon X5650

chips, 12 GB RAM
2 fast cores–one per socket–at 62.5% duty cycle
Remaining 10 cores at 37.5% duty cycle

simd config 12 cores in 2 Intel Xeon X5650
chips, 12 GB RAM

GPU-Bulky (GPU-B): NVIDIA GeForce 670 with 2 GB GDDR5 RAM
GPU-Wimpy (GPU-W): NVIDIA GeForce 650 with 512 MB GDDR5 RAM

Table 2. System configurations

Applications Task Size Task Speedup Ratio
Ratio GPU-B GPU-W

AES 1 32 22
LBM 3.33 1.4 0.5
DXT 5.6 16 4.5

lavaMD 20 27 7.5
Grep 33 10 3.3

Histogram 83 12 4

Table 3. GPU application characteristics. Speedups are relative to
the CPU alone, and size is relative to AES.

than waiting for the tasks to complete. Proteus also takes a
two-step approach to resolve the ping-pong problem. First,
libadept identifies the problem by detecting when the pre-
dicted runtime is different than the actual runtime. This in-
dicates that the utilization obtained from the monitor was
wrong. Applications then resolve the issue without any com-
munication between them. Second, on detection of the prob-
lem, libadept temporarily uses the actual utilization from the
last task instead of predicted utilization. Thus, the first ap-
plications to use the unit runs quickly and observe high uti-
lization, while those arriving later experience queuing delay
from congestion and hence lower utilization. Applications
with higher delays will tend to choose a different processing
unit, while those with less delay stay put.
Programmer effort. The stub exposes new interfaces for
programmers to write their applications. We created a sim-
ple task-based programming model to help prototype a com-
plete system from the programming model to the system
software. Though writing a program using the new interfaces
can be done without much effort as shown in Listing 1, it
still requires the program to be rewritten for the new inter-
face. To avoid this extra work, we have started intergrating
libadept runtime with currently available runtimes for het-
erogeneous architectures, StarPU [21]. libadept is used as
an execution model - the ability of stubs to combine per-
formance model with the system state to predict task per-
formance has been ported to StarPU’s dispatch mechanism.
We did not make any changes to the StarPU’s interfaces
meant for application development. Thus all programs al-
ready written for the StarPU model can leverage the smart-
ness of libadept and OpenKernel without any code change.
We should note that the tasks (implementations) could rely
on other runtimes [11, 27, 52] or be hand-optimized code for
a particular accelerator.
4. Evaluation
We try to answer the four major questions through our eval-
uation results: (a) How beneficial is adaptation in a shared
environment? (b) How good is the performance of a decen-

Name Description
Blackscholes [24] Mathematical model for a financial market
Dedup [24] Deduplication
Pbzip [12] file compression
AES [16] AES-128-ECB mode encryption, OpenCL
LBM [60] Fluid dynamics simulation, OpenCL
DXT [10] Image Compression, OpenCL
lavaMD [26] Particle simulation, OpenCL
Grep [59] Search for a string in a set of files, OpenCL

and OMP for CPU
Histogram [59] Finding the frequency of dictionary words in a

list of files, OpenCL and OMP for CPU
Sphyraena [22] Select queries on a sqlite database, CUDA
EncFS [56] FUSE based encrypted file system, CUDA
Truecrack [15] Password cracker, CUDA
x264 [46] Video Encoder, OpenCL

Table 4. Workloads
tralized system? (c) Can Proteus isolate the impact of mali-
cious or non-cooperative applications? (d) Can Proteus pro-
vide application-specific performance? Finally, we also eval-
uate the overhead and accuracy of individual components.

4.1 Experimental methods

Table 2 lists the configurations we use for our experiments.
We disable Turbo Boost and hyperthreading to avoid perfor-
mance variability and to enable control over power usage.
Platform. Processors with a mix of CPU types were not
available, so we emulate an asymmetric CPU (asym config)
using Intel’s clock-modulation feature [39] (in our platforms
DVFS cannot be used for a single core) to slow down all
cores but the fast cores. Similar mechanisms have been used
in past research to emulate asymmetric processors [20]. We
emulate powerful cores by setting all but two cores to run
at 62.5% duty cycle and the remaining two at 37.5%. So,
the speedup of fast core is 1.6x over slow core [3]. The
simd config configuration models a collection of GPU de-
vices and multi-core CPUs. Applications access these pro-
cessing units through OpenCL, which uses the NVIDIA
OpenCL SDK for GPUs and Intel OpenCL SDK for CPUs.

The GPU workloads are run simultaneously for all ex-
periments performed on simd config. Performance (system
throughput) is measured as the number of tasks executed
over a period of 60 seconds. We restart workload if it fin-
ishes before the experiment is completed. We allow early
workload completion only for results shown in Figure 3 and
Figure 6. We normalize the number of tasks executed based
on the task size ratio as shown in Table 3.
Workloads. We run the workloads listed in Table 4 in
a multi-programmed environment to create contention for
hardware resources. We select workloads with specific char-
acteristics like tasks suitable for fast cores, varying task sizes
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Figure 2. Contention for fast cores.

and real applications to demonstrate Proteus’s capabilities
and to exercise different forms of heterogeneity.

Dedup, Pbzip and Blackscholes are parallel applications
with tasks that can benefit from running on powerful CPU
cores. We use six workloads for GPUs, described in Table 4.
These workloads demonstrate the effect of task size and
implementation style. For OpenCL programs, we compile
to both GPU and CPU code. The same set of applications
was also ported on to StarPU runtime. For CUDA programs,
we use a separate implementation for the CPU. Table 3
shows the speedup for these applications when running on
GPUs and their average task sizes (relative execution time).
The speedup shown is relative to using all 12 CPUs at full
performance. We report the average of five runs and variation
was below 2% unless stated explicitly.

4.2 Adaptation

A major benefit of Proteus is the ability to dynamically adapt
to run-time conditions. We evaluate how well applications
adapt to a set of common scenarios.
Contention for fast cores. Proteus allows applications to
accelerate important code regions on a small number of fast
cores. We run multiple parallel applications concurrently
that have tasks suitable for a fast CPU: the compression
phase in Dedup and Pbzip, and the financial calculation in
Blackscholes. The speedup of fast core over regular core is
1.6x. Using asym config, we compare three configurations:
(a) Always-Fast is a compile-time static policy that always
runs all tasks on the fast cores, (b) Asym-Aware modifies
the Linux scheduler to execute tasks on normal cores but
migrate them to a powerful core if it becomes idle, and (c)
Proteus, where the stub decides where to run tasks based on
speedup achievable. To demonstrate the ability of Proteus to
prioritize fast cores for applications with better speedup, we
made Pbzip to receive a speedup of 2.65x on the faster cores.
This was done by modifying the scheduler to increase the
duty cycle to 100% only when Pbzip runs on the faster core.
The Proteus+ configuration runs Pbzip at higher speedup.

Figure 2 shows performance normalized to serial versions
of the applications running on a regular core. The over-
all performance of Proteus and Asym-Aware is comparable
though both configurations perform differently on Dedup
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Figure 3. Proteus task placement with FIFO policy.

and Blackscholes. This is because of the variation in task
sizes for Dedup in both configurations. The Always-Fast
performs poorly because it under-utilizes the regular CPU
cores while waiting for the fast CPUs. Proteus+ runs appli-
cation with the best speedup, Pbzip on the fast cores, which
gives application a 27% speedup compared to Proteus. Cor-
responding performance drop can be observed for Blacksc-
holes. The results show the high speedup setup only for Pro-
teus+ configuration since performance was similar for other
configurations for both the setup.
Contention for accelerators. A key goal of Proteus is to
manage contention for a shared accelerator. In current sys-
tems, applications cannot choose between processing units
and thus must wait for the contented accelerator. Proteus,
though, allows applications to use other processing units if
they are faster than waiting. As a result, applications with
large benefit from an accelerator tend to use it preferentially,
while applications with lesser benefit will migrate their work
to other processing units. Task size also plays a role with
the FIFO policy: large tasks dominate the usage on bulky
GPU. We ran all the OpenCL GPU workloads concurrently
on simd config using the FIFO policy.

In the Native system, all applications offload tasks to
GPU-B, which leaves GPU-W and the CPUs idle. In con-
trast, Proteus achieves 1.8x better performance because it
makes use of GPU-W and the CPU to run tasks as well. To
explain these results, Figure 3 plots the processing unit used
by each applications from a run where we launch all apps at
the same time. LBM uses the CPU only exclusively because
it gets low performance on the GPUs. In contrast, Histogram
and Grep always uses GPU-B, because of their relatively
larger tasks. This causes long delays for other applications,
and hence lavaMD and DXT move to GPU-W. When His-
togram completes, lavaMD switches to GPU-B and shares
the device with Grep. On the other hand, AES switches ex-
ecution between CPU and GPUs since the amount of data
to encrypt varies with every task offloaded by the program.
For smaller data, AES runs on the CPU to avoid costly data
copies. The three column stacks labeled FIFO in Figure 5
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shows the percentage of time each application gets on dif-
ferent processing units. The native stack at the left shows
the default behavior where all tasks are offloaded to GPU-B
alone.
Proteus as an execution model. We integrated Proteus as
the execution engine for StarPU, a runtime for heteroge-
neous architectures, to analyze the impact of contention
awareness in the runtime. The results are shown in Figure 4.

We ran the same experiment previously mentioned run-
ning all six workloads simultaneously on four different sys-
tems with a total of six different configurations. c-sched is
a simple centralized system that we describe more in Sec-
tion 4.3. We tested two policies with StarPU [13]: DMDA
offloads task to the best performing processing unit and Ea-
ger employs a task stealing approach where worker threads
of any processing unit can run a task as long as the imple-
mentation for that unit is available. All six workloads were
rewritten to run on StarPU runtime.

StarPU+Proteus outperforms the native policies of
StarPU (Eager and DMDA) by 1.5 and 2x. Ideally, the
StarPU on Proteus should have performance similar to c-
sched and Proteus. When LBM with StarPU runs on CPUs,
it suffers performance degradation due to interference from
worker threads in StarPU runtime. This results in the reduced
throughput for the configuration. The performance of other
applications were similar to that of c-sched and Proteus.

4.3 Decentralized vs. Centralized

We want to evaluate the performance of Proteus against a
centralized system to understand how much performance is
lost due to a decentralized architecture.
Centralized scheduler. We want to build a simple system
that behaves like a real centralized systems like PTask or
Pegasus but without the complexity and kernel modifications
of those systems. We built a centralized scheduler (c-sched)
aware of tasks from all applications and can make perfect
task placement decisions. c-sched is built on top of libadept
and it maintains task information from all applications on
a shared page (page mapped onto all applications address
space). c-sched consists of global queue per processing unit
rather than per application queues. This enables c-sched to
have a global view of the system and to predict the wait time
for every processing unit accurately. However, it expects
applications to be cooperative and the system can be easily
gamed by providing erroneous speedup values.
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Figure 5. Percentage of time spent on different devices with
various policies. Native & StarPU and Shares Native & StarPU
columns uses only GPU-B. Shares Assigned column is input.

Short-lived applications. Task placement for short-lived
applications is hard without the global knowledge of the
system since the utilization information can fluctuate. We
generated such applications that start, run a small task for
0.5 - 2ms and then exit. We generated small tasks with
varying inputs for AES and DXT workloads. We ran an
experiment running multiple such applications periodically
to test the overall throughput of the system in terms of tasks
processed per second. The c-sched system should provide
the best performance since it has a global knowledge of the
system. The performance of Proteus is only 3.5% lower than
c-sched whereas the native system that offloads all tasks to
GPU-B is 20% slower than c-sched. Proteus performs well
even without global knowledge of all workloads by using
the average task size and average number of applications
metrics from the agents rather than utilization information.
This shows that Proteus employing a decentralized design
performs as good as a centralized system.
Varying mix of workloads. We want to compare Proteus
on a more varied set of workloads. We created workloads
by varying three different parameters: Task sizes (large and
small), speedup(high and low), and longevity of applications
(long running or short-lived). We generated eight synthetic
workloads with manually generated performance model for
different configurations. All eight workloads were ran and
the system throughput was measured. We compared the re-
sults from c-sched, which could see all tasks and sleect the
best ones for each workload against Proteus. Overall, we
found that Proteus performed similar to c-sched whereas the
native system performed 40% lower than c-sched. Despite
the lack of global knowledge, Proteus achieves performance
equal to an omniscient global scheduler.

4.4 Preserving Isolation

Proteus only does placement in user-mode, but leaves
scheduling and policy enforcement in the kernel to protect
against malicious applications. To demonstrate this, we man-
ually allotted CUSTOM shares on GPU-B in the ratio of
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25:25:25:10:10:5 to Histogram, Grep, DXT, lavaMD, LBM
and AES. Such a share ratio was used to show that (a) appli-
cations with large tasks (Histogram) can be constrained, (b)
small tasks (LBM) can receive guaranteed share, and (c) iso-
lation is achieved even in the presence of varied task sizes.
Proteus applications. The three stacks on the right labeled
Shares Proteus in Figure 5 show the portion of each pro-
cessing unit used by each application. Histogram gets major
portion of GPU-B because of its large task sizes in FIFO-
based policy. With share-based scheduling, Histogram, Grep
and DXT evenly share GPU-B, while lava-MD uses GPU-
W since it yields better performance than the guaranteed 10
shares on GPU-B. We observe that three applications (His-
togram, Grep and DXT) receive more than their assigned
25% on GPU-B (30% each) because other applications de-
cided to offload tasks on GPU-W or CPUs. So, these three
active application enjoy equal share on GPU-B. Also, appli-
cations with lower shares of GPU-B, such as lavaMD and
LBM, offload tasks to GPU-W and CPUs respectively since
the performance is better than on their 10% of GPU-B. Fi-
nally, Proteus guarantees isolation by enforcing shares and
makes best effort to provide better performance by migrat-
ing to alternate processing units.
StarPU applications. The leftmost stack in Figure 5 shows
the utilization received by each application when no policy
is enforced. StarPU uses DMDA policy that makes it similar
to the native system where all tasks are run on GPU-B. The
Shares native and starpu column towards the right shows
the performance when share-based policy is enforced by the
agents. There are two key points: (a) The native system and
StarPU do not provide isolation. (b) As seen on the fourth
stack, isolation is provided even when applications are not
built using libadept.

4.5 Application-Specific Goals

The libadept library allows applications to set their own
performance goals through an optimizer that guides of-
fload decisions. We demonstrate Proteus’s ability to sup-
port application-specific performance goals by running the
following applications–x264, Sphyraena, and EncFS—with
their own goals in CUSTOM class. We also run Truecrack on
BKGRND class. Native performance of application is shown
in Table 5. The goal of each application is listed below.
• x264: Frame rate of 15 Frames/Sec where encoding qual-

ity can be given up for performance.
• EncFS: Bandwidth of 275MB/Sec on sequential reads.
• Sphyraena: Minimum throughput of 30 Queries/Sec.

We expect Proteus to automatically adapt—find the right
set of processing units or adjust shares or callback to applica-
tions to alter configurations to adjust performance—without
any manual intervention from applications in achieving their
goals. We started the applications with no shares but let
libadept to gather shares. The adaptation of the system is
shown in form of a timegraph in Figure 6.

Truecrack Sphyraena EncFS (read) x264
GPU-B 320 W/S 38 Q/S 340 MB/S 15 F/S
GPU-W 230 W/S 13 Q/S 190 MB/S -

CPU 15 W/S 0.2 Q/S 13 MB/S -

Table 5. Stand-alone performance of CUDA workloads. W/S -
Words/Sec; Q/S - Queries/Sec. F/S - Frames/Sec

The first phase until time 40 shows the ability of runtime
to enable applications to adapt themselves in reducing fi-
delity to achieve desired performance goals. x264 has the
ability to trade-off its output quality for better performance
(FPS). During the initial phase, x264 and sphyraena were
run and the goals were set as 15 FPS and 30 Queries/Sec.

On application start-up, libadept allocates default shares
for each application. As the optimizer runs, it detects the lag
in performance and attempts to use multiple GPUs. x264
being a synchronous application cannot leverage multiple
GPUs. However, Sphyranea spreads its tasks across both
GPU-B and GPU-W. x264 gets around 80 shares on GPU-
B and sphyraena gets 20 on GPU-B and complete GPU-W
before per-device shares are exhausted. Around 5th second,
the runtime notifies applications to reduce fidelity to improve
performance. x264 adapts by reducing quality and is able
to reach performance up to 13 FPS. On the other hand,
Sphyraena does not adapt and its performance is limited to
22 Queries/Sec.

Encfs cannot run at all in the first phase since all cus-
tom shares are consumed. We started Encfs after x264 com-
pleted which marks the second phase (from 45th second).
Sphyraena continues to run (we reduced the goal to 20
Queries/Sec) along with EncFS. These two goals can be ac-
commodated within the capacity of the system. The opti-
mizer adjusts the shares such that both applications achieve
their goals. 85 shares of GPU-B were given to EncFS, and
remaining of GPU-B and the whole GPU-W were given to
Sphyraena. The Truecrack application in BKGRND class
uses the accelerators only when they are not available else
it resorts to running on the CPUs.

4.6 Overhead and Accuracy

We separately measured the overhead of Proteus’s mecha-
nisms and the accuracy of its profiler.
Overheads. The primary overhead in Proteus comes from
stubs, which must decide where to dispatch tasks. The over-
head of stubs ranged between 1µs when choosing between
fast and regular CPU cores to 2µs for selecting among dif-
ferent GPUs. Aggregation can reduce this by changing the
dispatch decision less often.
Task profiler accuracy. We measure the difference between
the task profiler’s predicted run time and the actual task la-
tency including the wait time. Across all our experiments,
the prediction error is between 8–16%. The error came from
two sources. First, Proteus predicts that task size is a linear
function of input data size, which is not true for all applica-
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Figure 6. CUDA application performance.
tions (E.g. Sphyraena). Second, we found that the data copy
latency to the GPU varied due to contention for the PCIe bus.

To understand the importance of accurate performance
predictions, we built an analysis tool to observe the impact
of profiler error on task placement. For applications with
10x speedup, when the error rate increased from 5-100% the
probability of making a incorrect decision increases from
0.5% to 5%. For the same range of error rates, the error
probability varies from 2.3% to 25% for applications with
2x speedup. This shows that error in profiler prediction does
not impact placement for tasks with better speedups. Sim-
ilar analysis based on task sizes showed that the impact of
profiler is low for larger tasks.
Reducing data movement. Proteus reduces the amount
of data movement by limiting the frequency with which
tasks move between a processing units with task aggrega-
tion and the speedup threshold. When we randomly varied
the utilization between 65-75%, LBM’s preference flipped
between GPU-B and the CPUs and performance suffered.
Compared to a system without the threshold and aggregation
mechanisms, the speedup threshold improves performance
by 5%, and task aggregation improves performance by an
additional 60%.
Ping-pong problem. We also investigated the impact of
the ping-pong problem by comparing Proteus against our c-
sched centralized scheduler. Because it has knowledge of all
applications, c-sched does not have the ping-pong problem.
For the contention experiments described in § 4.2, we com-
pared the task movements of Proteus to c-sched. We found
that both systems had similar amounts of task movement.
Because of varied task size, applications saw different pro-
cessing unit utilization and hence made different schedul-
ing decisions. To force a ping-pong problem, we ran five
copies of the same Grep workload, which offloaded tasks
of the same size. Proteus’s ping-pong avoidance mecha-

nism helped in stabilizing task placement sooner, resulting
in the same task throughput same as the c-sched. Without
the mechanism, the system took 8-10 task offloads to stabi-
lize, as compared to 2-3 with ping-pong prevention.
5. Related Work
Runtimes for heterogeneous architectures. Many systems
provide runtime layers to aid applications in using hetero-
geneous units (e.g., StarPU[21], Merge[44], Harmony[29],
Lithe[54] and others). Proteus shares the similarity of auto-
matically selecting where to run a task. Unlike these run-
times, Proteus supports multi-programmed systems where
there may be contention for processing units. In addition,
Proteus exposes system-wide resource usage to applica-
tions to enable them to self-select processing units. Run-
times [25, 35] for databases help in task scheduling on het-
erogeneous architectures. However, they assume the system
resources are not shared with other applications.

Other systems abstract the presence of heterogeneous
processing units. For example, PTask [56] provide an ab-
straction for GPU programming that aids in scheduling and
data movement. Proteus differs by exposing multiple types
of processing units, not just GPUs, and by exposing usage
to applications to self-select a place to execute. In contrast,
PTask manages allocation and scheduling in the kernel.
Resource scheduling. Many past systems provide resource
management for heterogeneous systems (e.g., PTask[56],
Barrelfish[23], Helios[50], Pegasus [34]). In contrast to these
systems, where the OS transparently handles scheduling and
resource allocation, Proteus cooperatively involves the ap-
plication. It exposes processing unit utilization via the accel-
erator monitor to allow applications to predict where to run
their code, instead of making the choice for the application.

Other systems provide contention-aware scheduling
(Grand central dispatch[7], Scheduler activations[18]),
where applications or the system can adjust the degree of
parallelism. Proteus enables a similar outcome, but over
longer time scales. Unlike scheduler activations, Proteus
does not notify applications during change in resource al-
location, but allows applications to monitor their utilization.
Adaptive Systems. Proteus is inspired by many previous
works in the area of adaptive systems. Odyssey [51] was
built as an adaptation platform for mobile systems. Proteus
employs a similar architectures for shared heterogeneous
systems and uses alternate processing units as a mode of
adaptation. Application heartbeats [37] tunes applications
according to available resources. However, it does not handle
global resource management. We think the heartbeats work
is orthogonal to Proteus. Similar adaptive techniques have
been employed in databases [40] where better interfaces be-
tween OS and databases are designed for better performance.
6. Conclusion
Heterogeneity in various forms will be prevalent in future ar-
chitectures and the maturity in programming models is go-
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ing to make it easier to program accelerators. Proteus ex-
poses available heterogeneity with the OpenKernel, but uses
libadept to conceal it from application programmers. The
kernel retains control over resource management but pro-
vides application-level code with the flexibility to execute
wherever is best for the application. The decentralized de-
sign employed by Proteus performs well and at the same
time does not require extensive changes to the kernel. As
future work, we plan to explore how to better handle power-
limited heterogeneous systems.
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